ﻻ يوجد ملخص باللغة العربية
Using deformation theory of rational curves, we prove a conjecture of Sommese on the extendability of morphisms from ample subvarieties when the morphism is a smooth (or mildly singular) fibration with rationally connected fibers. We apply this result in the context of Fano fibrations and prove a classification theorem for projective bundle and quadric fibration structures on ample subvarieties.
Under some positivity assumptions, extension properties of rationally connected fibrations from a submanifold to its ambient variety are studied. Given a family of rational curves on a complex projective manifold X inducing a covering family on a sub
We establish a Grothendieck--Lefschetz theorem for smooth ample subvarieties of smooth projective varieties over an algebraically closed field of characteristic zero and, more generally, for smooth subvarieties whose complement has small cohomologica
We prove that a degeneration rationally connected varieties over a field of characteristic zero always contains a geometrically irreducible subvariety which is rationally connected.
We prove that rationally connected Calabi--Yau 3-folds with kawamata log terminal (klt) singularities form a birationally bounded family, or more generally, rationally connected $3$-folds of $epsilon$-CY type form a birationally bounded family for $e
Let $M$ be a hyperkahler manifold of maximal holonomy (that is, an IHS manifold), and let $K$ be its Kahler cone, which is an open, convex subset in the space $H^{1,1}(M, R)$ of real (1,1)-forms. This space is equipped with a canonical bilinear symme