ﻻ يوجد ملخص باللغة العربية
We prove that rationally connected Calabi--Yau 3-folds with kawamata log terminal (klt) singularities form a birationally bounded family, or more generally, rationally connected $3$-folds of $epsilon$-CY type form a birationally bounded family for $epsilon>0$. Moreover, we show that the set of $epsilon$-lc log Calabi--Yau pairs $(X, B)$ with coefficients of $B$ bounded away from zero is log bounded modulo flops. As a consequence, we deduce that rationally connected klt Calabi--Yau $3$-folds with mld bounded away from $1$ are bounded modulo flops.
Motivated by S-duality modularity conjectures in string theory, we define new invariants counting a restricted class of 2-dimensional torsion sheaves, enumerating pairs $Zsubset H$ in a Calabi-Yau threefold X. Here H is a member of a sufficiently pos
Let X be an n-dimensional Calabi-Yau with ordinary double points, where n is odd. Friedman showed that for n=3 the existence of a smoothing of X implies a specific type of relation between homology classes on a resolution of X. (The converse is also
Gromov-Witten theory is used to define an enumerative geometry of curves in Calabi-Yau 5-folds. We find recursions for meeting numbers of genus 0 curves, and we determine the contributions of moving multiple covers of genus 0 curves to the genus 1 Gr
We prove a Bogomolov-Gieseker type inequality for the third Chern characters of stable sheaves on Calabi-Yau 3-folds and a large class of Fano 3-folds with given rank and first and second Chern classes. The proof uses the spreading-out technique, van
We first construct a derived equivalence between a small crepant resolution of an affine toric Calabi-Yau 3-fold and a certain quiver with a superpotential. Under this derived equivalence we establish a wall-crossing formula for the generating functi