ﻻ يوجد ملخص باللغة العربية
The atmospheric composition of exoplanets with masses between 2 and 10 M$_oplus$ is poorly understood. In that regard, the sub-Neptune K2-18b, which is subject to Earth-like stellar irradiation, offers a valuable opportunity for the characterisation of such atmospheres. Previous analyses of its transmission spectrum from the Kepler, Hubble (HST), and Spitzer space telescopes data using both retrieval algorithms and forward-modelling suggest the presence of H$_2$O and an H$_2$--He atmosphere, but have not detected other gases, such as CH$_4$. We present simulations of the atmosphere of K2-18 b using Exo-REM, our self-consistent 1D radiative-equilibrium model, using a large grid of atmospheric parameters to infer constraints on its chemical composition. We show that our simulations favour atmospheric metallicities between 40 and 500 times solar and indicate, in some cases, the formation of H$_2$O-ice clouds, but not liquid H$_2$O clouds. We also confirm the findings of our previous study, which showed that CH$_4$ absorption features nominally dominate the transmission spectrum in the HST spectral range. We compare our results with results from retrieval algorithms and find that the H$_2$O-dominated spectrum interpretation is either due to the omission of CH$_4$ absorptions or a strong overfitting of the data. Finally, we investigated different scenarios that would allow for a CH$_4$-depleted atmosphere. We were able to fit the data to those scenarios, finding, however, that it is very unlikely for K2-18b to have a high internal temperature. A low C/O ratio ($approx$ 0.01--0.1) allows for H$_2$O to dominate the transmission spectrum and can fit the data but so far, this set-up lacks a physical explanation. Simulations with a C/O ratio $<$ 0.01 are not able to fit the data satisfactorily.
Hubble (HST) spectroscopic transit observations of the temperate sub-Neptune K2-18b were interpreted as the presence of water vapour with potential water clouds. 1D modelling studies also predict the formation of water clouds at some conditions. Howe
Results from the Kepler mission indicate that the occurrence rate of small planets ($<3$ $R_oplus$) in the habitable zone of nearby low-mass stars may be as high as 80%. Despite this abundance, probing the conditions and atmospheric properties on any
Very little experimental work has been done to explore the properties of photochemical hazes formed in atmospheres with very different compositions or temperatures than that of the outer solar system or of early Earth. With extrasolar planet discover
The role of stellar age in the measured properties and occurrence rates of exoplanets is not well understood. This is in part due to a paucity of known young planets and the uncertainties in age-dating for most exoplanet host stars. Exoplanets with w
We present new Spitzer transit observations of four K2 transiting sub-Neptunes: K2-36c, K2-79b, K2-167b, and K2-212b. We derive updated orbital ephemerides and radii for these planets based on a joint analysis of the Spitzer, TESS, and K2 photometry.