ﻻ يوجد ملخص باللغة العربية
We explore graph theoretical properties of minimal prime graphs of finite solvable groups. In finite group theory studying the prime graph of a group has been an important topic for the past almost half century. Recently prime graphs of solvable groups have been characterized in graph theoretical terms only. This now allows the study of these graphs with methods from graph theory only. Minimal prime graphs turn out to be of particular interest, and in this paper we pursue this further by exploring, among other things, diameters, Hamiltonian cycles and the property of being self-complementary for minimal prime graphs. We also study a new, but closely related notion of minimality for prime graphs and look into counting minimal prime graphs.
In 2011, Fang et al. in (J. Combin. Theory A 118 (2011) 1039-1051) posed the following problem: Classify non-normal locally primitive Cayley graphs of finite simple groups of valency $d$, where either $dleq 20$ or $d$ is a prime number. The only case
In this paper we completely characterize solvable real Lie groups definable in o-minimal expansions of the real field.
An automorphism of a graph is called quasi-semiregular if it fixes a unique vertex of the graph and its remaining cycles have the same length. This kind of symmetry of graphs was first investigated by Kutnar, Malniv{c}, Mart{i}nez and Maruv{s}iv{c} i
A graph is edge-transitive if its automorphism group acts transitively on the edge set. In this paper, we investigate the automorphism groups of edge-transitive graphs of odd order and twice prime valency. Let $Gamma$ be a connected graph of odd orde
A 2-dimensional framework is a straight line realisation of a graph in the Euclidean plane. It is radically solvable if the set of vertex coordinates is contained in a radical extension of the field of rationals extended by the squared edge lengths.