We prove that the theory of the $p$-adics ${mathbb Q}_p$ admits elimination of imaginaries provided we add a sort for ${rm GL}_n({mathbb Q}_p)/{rm GL}_n({mathbb Z}_p)$ for each $n$. We also prove that the elimination of imaginaries is uniform in $p$.
Using $p$-adic and motivic integration, we deduce the uniform rationality of certain formal zeta functions arising from definable equivalence relations. This also yields analogous results for definable equivalence relations over local fields of positive characteristic. The appendix contains an alternative proof, using cell decomposition, of the rationality (for fixed $p$) of these formal zeta functions that extends to the subanalytic context. As an application, we prove rationality and uniformity results for zeta functions obtained by counting twist isomorphism classes of irreducible representations of finitely generated nilpotent groups; these are analogous to similar results of Grunewald, Segal and Smith and of du Sautoy and Grunewald for subgroup zeta functions of finitely generated nilpotent groups.
We explore graph theoretical properties of minimal prime graphs of finite solvable groups. In finite group theory studying the prime graph of a group has been an important topic for the past almost half century. Recently prime graphs of solvable grou
ps have been characterized in graph theoretical terms only. This now allows the study of these graphs with methods from graph theory only. Minimal prime graphs turn out to be of particular interest, and in this paper we pursue this further by exploring, among other things, diameters, Hamiltonian cycles and the property of being self-complementary for minimal prime graphs. We also study a new, but closely related notion of minimality for prime graphs and look into counting minimal prime graphs.
We prove that groups definable in o-minimal structures have Cartan subgroups, and only finitely many conjugacy classes of such subgroups. We also delineate with precision how these subgroups cover the ambient group, in general very largely in terms of the dimension.
We prove several theorems relating amenability of groups in various categories (discrete, definable, topological, automorphism group) to model-theoretic invariants (quotients by connected components, Lascar Galois group, G-compactness, ...). For exam
ple, if $M$ is a countable, $omega$-categorical structure and $Aut(M)$ is amenable, as a topological group, then the Lascar Galois group $Gal_{L}(T)$ of the theory $T$ of $M$ is compact, Hausdorff (also over any finite set of parameters), that is $T$ is G-compact. An essentially special case is that if $Aut(M)$ is extremely amenable, then $Gal_{L}(T)$ is trivial, so, by a theorem of Lascar, the theory $T$ can be recovered from its category $Mod(T)$ of models. On the side of definable groups, we prove for example that if $G$ is definable in a model $M$, and $G$ is definably amenable, then the connected components ${G^{*}}^{00}_{M}$ and ${G^{*}}^{000}_{M}$ coincide, answering positively a question from an earlier paper of the authors. We also take the opportunity to further develop the model-theoretic approach to topological dynamics, obtaining for example some new invariants for topological groups, as well as allowing a uniform approach to the theorems above and the various categories.
For certain theories of existentially closed topological differential fields, we show that there is a strong relationship between $mathcal Lcup{D}$-definable sets and their $mathcal L$-reducts, where $mathcal L$ is a relational expansion of the field
language and $D$ a symbol for a derivation. This enables us to associate with an $mathcal Lcup{D}$-definable group in models of such theories, a local $mathcal L$-definable group. As a byproduct, we show that in closed ordered differential fields, one has the descending chain condition on centralisers.