ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing momentum dependence of the nonperturbative hadron structure in a global QCD analysis

83   0   0.0 ( 0 )
 نشر من قبل Aurore Courtoy
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss strategies for comparisons of nonperturbative QCD predictions for parton distribution functions (PDFs) with high-energy experiments in the region of large partonic momentum fractions $x$. Analytic functional forms for PDFs cannot be uniquely determined solely based on discrete experimental measurements because of a mathematical property of mimicry of PDF parametrizations that we prove using a representation based on Bezier curves. Predictions of nonperturbative QCD approaches for the $x$ dependence of PDFs instead should be cast in a form that enables decisive comparisons against experimental measurements. Predictions for effective power laws of $(1-x)$ dependence of PDFs may play this role. Expectations for PDFs in a proton based on quark counting rules are compared against the effective power laws of $(1-x)$ dependence satisfied by CT18 next-to-next-to-leading order parton distributions. We comment on implications for studies of PDFs in a pion, in particular on the comparison of nonperturbative approaches with phenomenological PDFs.

قيم البحث

اقرأ أيضاً

118 - Wu-Ki Tung 2004
The role of global QCD analysis of parton distribution functions (PDFs) in collider physics at the Tevatron and LHC is surveyed. Current status of PDF analyses are reviewed, emphasizing the uncertainties and the open issues. The stability of NLO QCD global analysis and its prediction on standard candle W/Z cross sections at hadron colliders are investigated. The importance of the precise measurement of various W/Z cross sections at the Tevatron in advancing our knowledge of PDFs, hence in enhancing the capabilities of making significant progress in W mass and top quark parameter measurements, as well as the discovery potentials of Higgs and New Physics at the Tevatron and LHC, is emphasized.
We discuss the impact of the charm quark mass in the CTEQ NNLO global analysis of parton distribution functions of the proton. The $bar{rm MS}$ mass $m_c(m_c)$ of the charm quark is extracted in the S-ACOT-$chi$ heavy-quark factorization scheme at ${ cal O}(alpha_s^2)$ accuracy and found to be in agreement with the world-average value. Impact on $m_c(m_c)$ of combined HERA-1 data on semiinclusive charm production at HERA collider and contributing systematic uncertainties are reviewed.
321 - N. Y. Cao , P. C. Barry , N. Sato 2021
We perform a new Monte Carlo QCD analysis of pion parton distribution functions, including, for the first time, transverse momentum dependent pion-nucleus Drell-Yan cross sections together with $p_{rm T}$-integrated Drell-Yan and leading neutron elec troproduction data from HERA. We assess the sensitivity of the Monte Carlo fits to kinematic cuts, factorization scale, and parametrization choice, and we discuss the impact of the various data sets on the pions quark and gluon distributions. This study provides the necessary step towards the simultaneous analysis of collinear and transverse momentum dependent pion distributions and the determination of the pions 3-dimensional structure.
95 - Wu-Ki Tung 2004
The current status of global QCD analysis of parton distribution functions of the nucleon is reviewed. Recent progress made in determining various features of the parton structure of the nucleon, as well as outstanding open questions are discussed. T hese include: the small-$x$ and large-$x$ behavior of the partons, particularly the gluon; the differentiation of $u$ and $d$ quarks; the strangeness sea ($s+bar{s}$), the strangeness asymmetry ($s-bar{s}$); and the heavy quark distributions $c$ and $b$. Important issues about assessing the uncertainties of parton distributions and their physical predictions are considered. These developments are all critical for the physics programs of HERA II, Tevatron Run II, RHIC, and LHC.
The photon -- induced interactions, present in $ep$, $eA$, $pp$, $pA$, $AA$ and $e^+ e^-$ collisions, are expressed within the color dipole approach in terms of the photon wave function, which describes the transition of the photon into a quark -- an tiquark color dipole. Such quantity is usually calculated using perturbation theory assuming that long distance corrections associated to strong interactions can be neglected. In this paper we investigate the impact of these nonperturbative QCD (npQCD) corrections to the description of the photon wave function for dipoles of large size in several observables measured at HERA, LEP and LHC. We assume a phenomenological ansatz for the treatment of these npQCD corrections and constrain the free parameters of our model using the experimental data for the photoproduction cross section. The predictions for the $gamma gamma$ cross section, exclusive $rho$ production in $ep$ collisions and the rapidity distribution for the $rho$ production in $PbPb$ collisions are compared with the data. We demonstrate that the inclusion of the nonperturbative QCD corrections improves the description of processes that are dominated by large dipoles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا