ﻻ يوجد ملخص باللغة العربية
We perform a new Monte Carlo QCD analysis of pion parton distribution functions, including, for the first time, transverse momentum dependent pion-nucleus Drell-Yan cross sections together with $p_{rm T}$-integrated Drell-Yan and leading neutron electroproduction data from HERA. We assess the sensitivity of the Monte Carlo fits to kinematic cuts, factorization scale, and parametrization choice, and we discuss the impact of the various data sets on the pions quark and gluon distributions. This study provides the necessary step towards the simultaneous analysis of collinear and transverse momentum dependent pion distributions and the determination of the pions 3-dimensional structure.
We perform the first global QCD analysis of pion valence, sea quark, and gluon distributions within a Bayesian Monte Carlo framework with threshold resummation on Drell-Yan cross sections at next-to-leading log accuracy. Exploring various treatments
We show that transverse-momentum-dependent parton distribution functions (TMDPDFs), important non-perturbative quantities for describing the properties of hadrons in high-energy scattering processes such as Drell-Yan and semi-inclusive deep-inelastic
There are two mass generating mechanisms in the standard model of particle physics (SM). One is related to the Higgs boson and fairly well understood. The other is embedded in quantum chromodynamics (QCD), the SMs strong interaction piece; and althou
During the INT-18-3 workshop, we presented an analysis of unpolarized Drell-Yan pair production in pion-nucleus scattering with a particular focus into the pion Transverse Momentum Distributions in view of the future Electron Ion Collider. The transv
We present an analysis of unpolarized Drell-Yan pair production in pion-nucleus scattering with a particular focus into the pion dynamics. The study consists in analyzing the effect of the partonic longitudinal and, especially, transverse distributio