ﻻ يوجد ملخص باللغة العربية
Modern Monte Carlo-type approaches to dynamic decision problems are reformulated as empirical loss minimization, allowing direct applications of classical results from statistical machine learning. These computational methods are then analyzed in this framework to demonstrate their effectiveness as well as their susceptibility to generalization error. Standard uses of classical results prove potential overlearning, thus bias-variance trade-off, by connecting over-trained networks to anticipating controls. On the other hand, non-asymptotic estimates based on Rademacher complexity show the convergence of these algorithms for sufficiently large training sets. A numerically studied stylized example illustrates these possibilities, including the importance of problem dimension in the degree of overlearning, and the effectiveness of this approach.
Breakthroughs in machine learning are rapidly changing science and society, yet our fundamental understanding of this technology has lagged far behind. Indeed, one of the central tenets of the field, the bias-variance trade-off, appears to be at odds
Learning algorithms need bias to generalize and perform better than random guessing. We examine the flexibility (expressivity) of biased algorithms. An expressive algorithm can adapt to changing training data, altering its outcome based on changes in
Intuitively, a scientist might assume that a more complex regression model will necessarily yield a better predictive model of experimental data. Herein, we disprove this notion in the context of extracting the proton charge radius from charge form f
The classical bias-variance trade-off predicts that bias decreases and variance increase with model complexity, leading to a U-shaped risk curve. Recent work calls this into question for neural networks and other over-parameterized models, for which
The overall performance or expected excess risk of an iterative machine learning algorithm can be decomposed into training error and generalization error. While the former is controlled by its convergence analysis, the latter can be tightly handled b