ﻻ يوجد ملخص باللغة العربية
Recent works have demonstrated the added value of dynamic amino acid positron emission tomography (PET) for glioma grading and genotyping, biopsy targeting, and recurrence diagnosis. However, most of these studies are exclusively based on hand-crafted qualitative or semi-quantitative dynamic features extracted from the mean time activity curve (TAC) within predefined volumes. Voxelwise dynamic PET data analysis could instead provide a better insight into intra-tumour heterogeneity of gliomas. In this work, we investigate the ability of the widely used principal component analysis (PCA) method to extract meaningful quantitative dynamic features from high-dimensional motion-corrected dynamic [S-methyl-11C]methionine PET data in a first cohort of 20 glioma patients. By means of realistic numerical simulations, we demonstrate the robustness of our methodology to noise. In a second cohort of 13 glioma patients, we compare the resulting parametric maps to these provided by standard one- and two-tissue compartment pharmacokinetic (PK) models. We show that our PCA model outperforms PK models in the identification of intra-tumour uptake dynamics heterogeneity while being much less computationally expensive. Such parametric maps could be valuable to assess tumour aggressiveness locally with applications in treatment planning as well as in the evaluation of tumour progression and response to treatment. This work also provides further encouraging results on the added value of dynamic over static analysis of [S-methyl-11C]methionine PET data in gliomas, as previously demonstrated for O-(2-[18F]fluoroethyl)-L-tyrosine.
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any b
In recent years, Independent Component Analysis (ICA) has successfully been applied to remove noise and artifacts in images obtained from Three-dimensional Polarized Light Imaging (3D-PLI) at the mesoscale (i.e., 64 $mu$m). Here, we present an automa
Head-related transfer function (HRTF) plays an important role in the construction of 3D auditory display. This paper presents an individual HRTF modeling method using deep neural networks based on spatial principal component analysis. The HRTFs are r
Principal component analysis has been widely adopted to reduce the dimension of data while preserving the information. The quantum version of PCA (qPCA) can be used to analyze an unknown low-rank density matrix by rapidly revealing the principal comp
Dimension reduction for high-dimensional compositional data plays an important role in many fields, where the principal component analysis of the basis covariance matrix is of scientific interest. In practice, however, the basis variables are latent