ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning control for transmission and navigation with a mobile robot under unknown communication rates

348   0   0.0 ( 0 )
 نشر من قبل Samson Lasaulce
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In tasks such as surveying or monitoring remote regions, an autonomous robot must move while transmitting data over a wireless network with unknown, position-dependent transmission rates. For such a robot, this paper considers the problem of transmitting a data buffer in minimum time, while possibly also navigating towards a goal position. Two approaches are proposed, each consisting of a machine-learning component that estimates the rate function from samples; and of an optimal-control component that moves the robot given the current rate function estimate. Simple obstacle avoidance is performed for the case without a goal position. In extensive simulations, these methods achieve competitive performance compared to known-rate and unknown-rate baselines. A real indoor experiment is provided in which a Parrot AR.Drone 2 successfully learns to transmit the buffer.

قيم البحث

اقرأ أيضاً

In this paper, we present the Role Playing Learning (RPL) scheme for a mobile robot to navigate socially with its human companion in populated environments. Neural networks (NN) are constructed to parameterize a stochastic policy that directly maps s ensory data collected by the robot to its velocity outputs, while respecting a set of social norms. An efficient simulative learning environment is built with maps and pedestrians trajectories collected from a number of real-world crowd data sets. In each learning iteration, a robot equipped with the NN policy is created virtually in the learning environment to play itself as a companied pedestrian and navigate towards a goal in a socially concomitant manner. Thus, we call this process Role Playing Learning, which is formulated under a reinforcement learning (RL) framework. The NN policy is optimized end-to-end using Trust Region Policy Optimization (TRPO), with consideration of the imperfectness of robots sensor measurements. Simulative and experimental results are provided to demonstrate the efficacy and superiority of our method.
When a robot performs a task next to a human, physical interaction is inevitable: the human might push, pull, twist, or guide the robot. The state-of-the-art treats these interactions as disturbances that the robot should reject or avoid. At best, th ese robots respond safely while the human interacts; but after the human lets go, these robots simply return to their original behavior. We recognize that physical human-robot interaction (pHRI) is often intentional -- the human intervenes on purpose because the robot is not doing the task correctly. In this paper, we argue that when pHRI is intentional it is also informative: the robot can leverage interactions to learn how it should complete the rest of its current task even after the person lets go. We formalize pHRI as a dynamical system, where the human has in mind an objective function they want the robot to optimize, but the robot does not get direct access to the parameters of this objective -- they are internal to the human. Within our proposed framework human interactions become observations about the true objective. We introduce approximations to learn from and respond to pHRI in real-time. We recognize that not all human corrections are perfect: often users interact with the robot noisily, and so we improve the efficiency of robot learning from pHRI by reducing unintended learning. Finally, we conduct simulations and user studies on a robotic manipulator to compare our proposed approach to the state-of-the-art. Our results indicate that learning from pHRI leads to better task performance and improved human satisfaction.
Mobility in an effective and socially-compliant manner is an essential yet challenging task for robots operating in crowded spaces. Recent works have shown the power of deep reinforcement learning techniques to learn socially cooperative policies. Ho wever, their cooperation ability deteriorates as the crowd grows since they typically relax the problem as a one-way Human-Robot interaction problem. In this work, we want to go beyond first-order Human-Robot interaction and more explicitly model Crowd-Robot Interaction (CRI). We propose to (i) rethink pairwise interactions with a self-attention mechanism, and (ii) jointly model Human-Robot as well as Human-Human interactions in the deep reinforcement learning framework. Our model captures the Human-Human interactions occurring in dense crowds that indirectly affects the robots anticipation capability. Our proposed attentive pooling mechanism learns the collective importance of neighboring humans with respect to their future states. Various experiments demonstrate that our model can anticipate human dynamics and navigate in crowds with time efficiency, outperforming state-of-the-art methods.
We present a novel Deep Reinforcement Learning (DRL) based policy to compute dynamically feasible and spatially aware velocities for a robot navigating among mobile obstacles. Our approach combines the benefits of the Dynamic Window Approach (DWA) in terms of satisfying the robots dynamics constraints with state-of-the-art DRL-based navigation methods that can handle moving obstacles and pedestrians well. Our formulation achieves these goals by embedding the environmental obstacles motions in a novel low-dimensional observation space. It also uses a novel reward function to positively reinforce velocities that move the robot away from the obstacles heading direction leading to significantly lower number of collisions. We evaluate our method in realistic 3-D simulated environments and on a real differential drive robot in challenging dense indoor scenarios with several walking pedestrians. We compare our method with state-of-the-art collision avoidance methods and observe significant improvements in terms of success rate (up to 33% increase), number of dynamics constraint violations (up to 61% decrease), and smoothness. We also conduct ablation studies to highlight the advantages of our observation space formulation, and reward structure.
In recent years, reinforcement learning and learning-based control -- as well as the study of their safety, crucial for deployment in real-world robots -- have gained significant traction. However, to adequately gauge the progress and applicability o f new results, we need the tools to equitably compare the approaches proposed by the controls and reinforcement learning communities. Here, we propose a new open-source benchmark suite, called safe-control-gym. Our starting point is OpenAIs Gym API, which is one of the de facto standard in reinforcement learning research. Yet, we highlight the reasons for its limited appeal to control theory researchers -- and safe control, in particular. E.g., the lack of analytical models and constraint specifications. Thus, we propose to extend this API with (i) the ability to specify (and query) symbolic models and constraints and (ii) introduce simulated disturbances in the control inputs, measurements, and inertial properties. We provide implementations for three dynamic systems -- the cart-pole, 1D, and 2D quadrotor -- and two control tasks -- stabilization and trajectory tracking. To demonstrate our proposal -- and in an attempt to bring research communities closer together -- we show how to use safe-control-gym to quantitatively compare the control performance, data efficiency, and safety of multiple approaches from the areas of traditional control, learning-based control, and reinforcement learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا