ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting Infrared Single Photons with Near-Unity System Detection Efficiency

129   0   0.0 ( 0 )
 نشر من قبل Jin Chang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single photon detectors are indispensable tools in optics, from fundamental measurements to quantum information processing. The ability of superconducting nanowire single photon detectors to detect single photons with unprecedented efficiency, short dead time and high time resolution over a large frequency range enabled major advances in quantum optics. However, combining near-unity system detection efficiency with high timing performance remains an outstanding challenge. In this work, we show novel superconducting nanowire single photon detectors fabricated on membranes with 94-99.5 (plus minus 2.07%) system detection efficiency in the wavelength range 1280-1500 nm. The SiO2/Au membrane enables broadband absorption in small SNSPDs, offering high detection efficiency in combination with high timing performance. With low noise cryogenic amplifiers operated in the same cryostat, our efficient detectors reach timing jitter in the range of 15-26 ps. We discuss the prime challenges in optical design, device fabrication as well as accurate and reliable detection efficiency measurements to achieve high performance single-photon detection. As a result, the fast-developing fields of quantum information science, quantum metrology, infrared imaging and quantum networks will greatly benefit from this far-reaching quantum detection technology.



قيم البحث

اقرأ أيضاً

120 - Peng Hu , Hao Li , Lixing You 2020
Superconducting nanowire single-photon detector (SNSPD) with near-unity system efficiency is a key enabling, but still elusive technology for numerous quantum fundamental theory verifications and quantum information applications. The key challenge is to have both a near-unity photon-response probability and absorption efficiency simultaneously for the meandered nanowire with a finite filling ratio, which is more crucial for NbN than other superconducting materials (e.g., WSi) with lower transition temperatures. Here, we overcome the above challenge and produce NbN SNSPDs with a record system efficiency by replacing a single-layer nanowire with twin-layer nanowires on a dielectric mirror. The detector at 0.8 K shows a maximal system detection efficiency (SDE) of 98% at 1590 nm and a system efficiency of over 95% in the wavelength range of 1530-1630 nm. Moreover, the detector at 2.1K demonstrates a maximal SDE of 95% at 1550 nm using a compacted two-stage cryocooler. This type of detector also shows the robustness against various parameters, such as the geometrical size of the nanowire, and the spectral bandwidth, enabling a high yield of 73% (36%) with an SDE of >80% (90%) at 2.1K for 45 detectors fabricated in the same run. These SNSPDs made of twin-layer nanowires are of important practical significance for batch production.
Single-photon detectors (SPDs) at near infrared wavelengths with high system detection efficiency (> 90%), low dark count rate (< 1 counts per second, cps), low timing jitter (< 100 ps), and short reset time (< 100 ns) would enable landmark experimen ts in a variety of fields. Although some of the existing approaches to single-photon detection fulfill one or two of the above specifications, to date no detector has met all of the specifications simultaneously. Here we report on a fiber-coupled single-photon-detection system employing superconducting nanowire single photon detectors (SNSPDs) that closely approaches the ideal performance of SPDs. Our detector system has a system detection efficiency (SDE), including optical coupling losses, greater than 90% in the wavelength range lambda = 1520-1610 nm; device dark count rate (measured with the device shielded from room-temperature blackbody radiation) of ~ 0.01 cps; timing jitter of ~ 150 ps FWHM; and reset time of 40 ns.
83 - Xing Ding , Yu He , Z.-C. Duan 2016
Scalable photonic quantum technologies require on-demand single-photon sources with simultaneously high levels of purity, indistinguishability, and efficiency. These key features, however, have only been demonstrated separately in previous experiment s. Here, by s-shell pulsed resonant excitation of a Purcell-enhanced quantum dot-micropillar system, we deterministically generate resonance fluorescence single photons which, at pi pulse excitation, have an extraction efficiency of 66%, single-photon purity of 99.1%, and photon indistinguishability of 98.5%. Such a single-photon source for the first time combines the features of high efficiency and near-perfect levels of purity and indistinguishabilty, and thus open the way to multi-photon experiments with semiconductor quantum dots.
Single photon detectors are fundamental tools of investigation in quantum optics and play a central role in measurement theory and quantum informatics. Photodetectors based on different technologies exist at optical frequencies and much effort is cur rently being spent on pushing their efficiencies to meet the demands coming from the quantum computing and quantum communication proposals. In the microwave regime however, a single photon detector has remained elusive although several theoretical proposals have been put forth. In this article, we review these recent proposals, especially focusing on non-destructive detectors of propagating microwave photons. These detection schemes using superconducting artificial atoms can reach detection efficiencies of 90% with existing technologies and are ripe for experimental investigations.
Efficient collection of fluorescence from nitrogen vacancy (NV) centers in diamond underlies the spin-dependent optical read-out that is necessary for quantum information processing and enhanced sensing applications. The optical collection efficiency from NVs within diamond substrates is limited primarily due to the high refractive index of diamond and the non-directional dipole emission. Here we introduce a light collection strategy based on chirped, circular dielectric gratings that can be fabricated on a bulk diamond substrate to redirect an emitters far-field radiation pattern. Using a genetic optimization algorithm, these grating designs achieve 98.9% collection efficiency for the NV zero-phonon emission line, collected from the back surface of the diamond with an objective of aperture 0.9. Across the broadband emission spectrum of the NV (600-800 nm), the chirped grating achieves 82.2% collection efficiency into a numerical aperture of 1.42, corresponding to an oil immersion objective again on the back side of the diamond. Our proposed bulk-dielectric grating structures are applicable to other optically active solid state quantum emitters in high index host materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا