ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting single infrared photons toward optimal system detection efficiency

121   0   0.0 ( 0 )
 نشر من قبل Lixing You
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconducting nanowire single-photon detector (SNSPD) with near-unity system efficiency is a key enabling, but still elusive technology for numerous quantum fundamental theory verifications and quantum information applications. The key challenge is to have both a near-unity photon-response probability and absorption efficiency simultaneously for the meandered nanowire with a finite filling ratio, which is more crucial for NbN than other superconducting materials (e.g., WSi) with lower transition temperatures. Here, we overcome the above challenge and produce NbN SNSPDs with a record system efficiency by replacing a single-layer nanowire with twin-layer nanowires on a dielectric mirror. The detector at 0.8 K shows a maximal system detection efficiency (SDE) of 98% at 1590 nm and a system efficiency of over 95% in the wavelength range of 1530-1630 nm. Moreover, the detector at 2.1K demonstrates a maximal SDE of 95% at 1550 nm using a compacted two-stage cryocooler. This type of detector also shows the robustness against various parameters, such as the geometrical size of the nanowire, and the spectral bandwidth, enabling a high yield of 73% (36%) with an SDE of >80% (90%) at 2.1K for 45 detectors fabricated in the same run. These SNSPDs made of twin-layer nanowires are of important practical significance for batch production.



قيم البحث

اقرأ أيضاً

Single photon detectors are indispensable tools in optics, from fundamental measurements to quantum information processing. The ability of superconducting nanowire single photon detectors to detect single photons with unprecedented efficiency, short dead time and high time resolution over a large frequency range enabled major advances in quantum optics. However, combining near-unity system detection efficiency with high timing performance remains an outstanding challenge. In this work, we show novel superconducting nanowire single photon detectors fabricated on membranes with 94-99.5 (plus minus 2.07%) system detection efficiency in the wavelength range 1280-1500 nm. The SiO2/Au membrane enables broadband absorption in small SNSPDs, offering high detection efficiency in combination with high timing performance. With low noise cryogenic amplifiers operated in the same cryostat, our efficient detectors reach timing jitter in the range of 15-26 ps. We discuss the prime challenges in optical design, device fabrication as well as accurate and reliable detection efficiency measurements to achieve high performance single-photon detection. As a result, the fast-developing fields of quantum information science, quantum metrology, infrared imaging and quantum networks will greatly benefit from this far-reaching quantum detection technology.
Single-photon detectors (SPDs) at near infrared wavelengths with high system detection efficiency (> 90%), low dark count rate (< 1 counts per second, cps), low timing jitter (< 100 ps), and short reset time (< 100 ns) would enable landmark experimen ts in a variety of fields. Although some of the existing approaches to single-photon detection fulfill one or two of the above specifications, to date no detector has met all of the specifications simultaneously. Here we report on a fiber-coupled single-photon-detection system employing superconducting nanowire single photon detectors (SNSPDs) that closely approaches the ideal performance of SPDs. Our detector system has a system detection efficiency (SDE), including optical coupling losses, greater than 90% in the wavelength range lambda = 1520-1610 nm; device dark count rate (measured with the device shielded from room-temperature blackbody radiation) of ~ 0.01 cps; timing jitter of ~ 150 ps FWHM; and reset time of 40 ns.
208 - D. Henrich , L. Rehm , S. Dorner 2012
We investigate the detection efficiency of a spiral layout of a Superconducting Nanowire Single-Photon Detector (SNSPD). The design is less susceptible to the critical current reduction in sharp turns of the nanowire than the conventional meander des ign. Detector samples with different nanowire width from 300 to 100 nm are patterned from a 4 nm thick NbN film deposited on sapphire substrates. The critical current IC at 4.2 K for spiral, meander, and simple bridge structures is measured and compared. On the 100 nm wide samples, the detection efficiency is measured in the wavelength range 400-1700 nm and the cut-off wavelength of the hot-spot plateau is determined. In the optical range, the spiral detector reaches a detection efficiency of 27.6%, which is ~1.5 times the value of the meander. In the infrared range the detection efficiency is more than doubled.
Thorough control of quantum measurement is key to the development of quantum information technologies. Many measurements are destructive, removing more information from the system than they obtain. Quantum non-demolition (QND) measurements allow repe ated measurements that give the same eigenvalue. They could be used for several quantum information processing tasks such as error correction, preparation by measurement, and one-way quantum computing. Achieving QND measurements of photons is especially challenging because the detector must be completely transparent to the photons while still acquiring information about them. Recent progress in manipulating microwave photons in superconducting circuits has increased demand for a QND detector which operates in the gigahertz frequency range. Here we demonstrate a QND detection scheme which measures the number of photons inside a high quality-factor microwave cavity on a chip. This scheme maps a photon number onto a qubit state in a single-shot via qubit-photon logic gates. We verify the operation of the device by analyzing the average correlations of repeated measurements, and show that it is 90% QND. It differs from previously reported detectors because its sensitivity is strongly selective to chosen photon number states. This scheme could be used to monitor the state of a photon-based memory in a quantum computer.
Single photon detectors are fundamental tools of investigation in quantum optics and play a central role in measurement theory and quantum informatics. Photodetectors based on different technologies exist at optical frequencies and much effort is cur rently being spent on pushing their efficiencies to meet the demands coming from the quantum computing and quantum communication proposals. In the microwave regime however, a single photon detector has remained elusive although several theoretical proposals have been put forth. In this article, we review these recent proposals, especially focusing on non-destructive detectors of propagating microwave photons. These detection schemes using superconducting artificial atoms can reach detection efficiencies of 90% with existing technologies and are ripe for experimental investigations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا