ﻻ يوجد ملخص باللغة العربية
We study ancestral structures for the two-type Moran model with two-way mutation and frequency-dependent selection that follows the nonlinear dominance or fittest-type-wins scheme. Both schemes lead, in distribution, to the same type-frequency process. Reasoning through the mutation structure on the ancestral selection graph (ASG), we derive processes suitable to determine the type distribution of the present and ancestral population, leading to, respectively, the killed and pruned lookdown ASG. To this end, we establish factorial moment dualities to the Moran model and a relative thereof, respectively. Finally, we extend the results to the diffusion limit.
We consider the mutation--selection differential equation with pairwise interaction (or, equivalently, the diploid mutation--selection equation) and establish the corresponding ancestral process, which is a random tree and a variant of the ancestral
Consider a two-type Moran population of size $N$ subject to selection and mutation, which is immersed in a varying environment. The population is susceptible to exceptional changes in the environment, which accentuate the selective advantage of the f
We review recent progress on ancestral processes related to mutation-selection models, both in the deterministic and the stochastic setting. We mainly rely on two concepts, namely, the killed ancestral selection graph and the pruned lookdown ancestra
We reconsider the deterministic haploid mutation-selection equation with two types. This is an ordinary differential equation that describes the type distribution (forward in time) in a population of infinite size. This paper establishes ancestral (r
We consider a spatial model of cancer in which cells are points on the $d$-dimensional torus $mathcal{T}=[0,L]^d$, and each cell with $k-1$ mutations acquires a $k$th mutation at rate $mu_k$. We will assume that the mutation rates $mu_k$ are increasi