ترغب بنشر مسار تعليمي؟ اضغط هنا

Lines of descent in a Moran model with frequency-dependent selection and mutation

105   0   0.0 ( 0 )
 نشر من قبل Ellen Baake
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study ancestral structures for the two-type Moran model with two-way mutation and frequency-dependent selection that follows the nonlinear dominance or fittest-type-wins scheme. Both schemes lead, in distribution, to the same type-frequency process. Reasoning through the mutation structure on the ancestral selection graph (ASG), we derive processes suitable to determine the type distribution of the present and ancestral population, leading to, respectively, the killed and pruned lookdown ASG. To this end, we establish factorial moment dualities to the Moran model and a relative thereof, respectively. Finally, we extend the results to the diffusion limit.



قيم البحث

اقرأ أيضاً

We consider the mutation--selection differential equation with pairwise interaction (or, equivalently, the diploid mutation--selection equation) and establish the corresponding ancestral process, which is a random tree and a variant of the ancestral selection graph. The formal relation to the forward model is given via duality. To make the tree tractable, we prune branches upon mutations, thus reducing it to its informative parts. The hierarchies inherent in the tree are encoded systematically via tripod trees with weighted leaves; this leads to the stratified ancestral selection graph. The latter also satisfies a duality relation with the mutation--selection equation. Each of the dualities provides a stochastic representation of the solution of the differential equation. This allows us to connect the equilibria and their bifurcations to the long-term behaviour of the ancestral process. Furthermore, with the help of the stratified ancestral selection graph, we obtain explicit results about the ancestral type distribution in the case of unidirectional mutation.
Consider a two-type Moran population of size $N$ subject to selection and mutation, which is immersed in a varying environment. The population is susceptible to exceptional changes in the environment, which accentuate the selective advantage of the f it individuals. In this setting, we show that the type-composition in the population is continuous with respect to the environment. This allows us to replace the deterministic environment by a random one, which is driven by a subordinator. Assuming that selection, mutation and the environment are weak in relation to $N$, we show that the type-frequency process, with time speed up by $N$, converges as $Ntoinfty$ to a Wright--Fisher-type SDE with a jump term modeling the effect of the environment. Next, we study the asymptotic behavior of the limiting model in the far future and in the distant past, both in the annealed and in the quenched setting. Our approach builds on the genealogical picture behind the model. The latter is described by means of an extension of the ancestral selection graph (ASG). The formal relation between forward and backward objects is given in the form of a moment duality between the type-frequency process and the line-counting process of a pruned version of the ASG. This relation yields characterizations of the annealed and the quenched moments of the asymptotic type distribution. A more involved pruning of the ASG allows us to obtain annealed and quenched results for the ancestral type distribution. In the absence of mutations, one of the types fixates and our results yield expressions for the fixation probabilities.
We review recent progress on ancestral processes related to mutation-selection models, both in the deterministic and the stochastic setting. We mainly rely on two concepts, namely, the killed ancestral selection graph and the pruned lookdown ancestra l selection graph. The killed ancestral selection graph gives a representation of the type of a random individual from a stationary population, based upon the individuals potential ancestry back until the mutations that define the individuals type. The pruned lookdown ancestral selection graph allows one to trace the ancestry of individuals from a stationary distribution back into the distant past, thus leading to the stationary distribution of ancestral types. We illustrate the results by applying them to a prototype model for the error threshold phenomenon.
We reconsider the deterministic haploid mutation-selection equation with two types. This is an ordinary differential equation that describes the type distribution (forward in time) in a population of infinite size. This paper establishes ancestral (r andom) structures inherent in this deterministic model. In a first step, we obtain a representation of the deterministic equations solution (and, in particular, of its equilibrium) in terms of an ancestral process called the killed ancestral selection graph. This representation allows one to understand the bifurcations related to the error threshold phenomenon from a genealogical point of view. Next, we characterise the ancestral type distribution by means of the pruned lookdown ancestral selection graph and study its properties at equilibrium. We also provide an alternative characterisation in terms of a piecewise-deterministic Markov process. Throughout, emphasis is on the underlying dualities as well as on explicit results.
We consider a spatial model of cancer in which cells are points on the $d$-dimensional torus $mathcal{T}=[0,L]^d$, and each cell with $k-1$ mutations acquires a $k$th mutation at rate $mu_k$. We will assume that the mutation rates $mu_k$ are increasi ng, and we find the asymptotic waiting time for the first cell to acquire $k$ mutations as the torus volume tends to infinity. This paper generalizes results on waiting for $kgeq 3$ mutations by Foo, Leder, and Schweinsberg, who considered the case in which all of the mutation rates $mu_k$ were the same. In addition, we find the limiting distribution of the spatial distances between mutations for certain values of the mutation rates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا