ﻻ يوجد ملخص باللغة العربية
We consider a spatial model of cancer in which cells are points on the $d$-dimensional torus $mathcal{T}=[0,L]^d$, and each cell with $k-1$ mutations acquires a $k$th mutation at rate $mu_k$. We will assume that the mutation rates $mu_k$ are increasing, and we find the asymptotic waiting time for the first cell to acquire $k$ mutations as the torus volume tends to infinity. This paper generalizes results on waiting for $kgeq 3$ mutations by Foo, Leder, and Schweinsberg, who considered the case in which all of the mutation rates $mu_k$ were the same. In addition, we find the limiting distribution of the spatial distances between mutations for certain values of the mutation rates.
Motivated by models of cancer formation in which cells need to acquire $k$ mutations to become cancerous, we consider a spatial population model in which the population is represented by the $d$-dimensional torus of side length $L$. Initially, no sit
We consider the mutation--selection differential equation with pairwise interaction (or, equivalently, the diploid mutation--selection equation) and establish the corresponding ancestral process, which is a random tree and a variant of the ancestral
Using graphical methods based on a `lookdown and pruned version of the {em ancestral selection graph}, we obtain a representation of the type distribution of the ancestor in a two-type Wright-Fisher population with mutation and selection, conditional
Microbial communities are ubiquitous in nature and come in a multitude of forms, ranging from communities dominated by a handful of species to communities containing a wide variety of metabolically distinct organisms. This huge range in diversity is
We reconsider the deterministic haploid mutation-selection equation with two types. This is an ordinary differential equation that describes the type distribution (forward in time) in a population of infinite size. This paper establishes ancestral (r