ترغب بنشر مسار تعليمي؟ اضغط هنا

Multifunctional photonic integrated circuit for diverse microwave signal generation, transmission and processing

421   0   0.0 ( 0 )
 نشر من قبل Xihua Zou
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microwave photonics (MWP) studies the interaction between microwave and optical waves for the generation, transmission and processing of microwave signals (i.e., three key domains), taking advantages of broad bandwidth and low loss offered by modern photonics. Integrated MWP using photonic integrated circuits (PICs) can reach a compact, reliable and green implementation. Most PICs, however, are recently developed to perform one or more functions restricted inside a single domain. In this paper, as highly desired, a multifunctional PIC is proposed to cover the three key domains. The PIC is fabricated on InP platform by monolithically integrating four laser diodes and two modulators. Using the multifunctional PIC, seven fundamental functions across microwave signal generation, transmission and processing are demonstrated experimentally. Outdoor field trials for electromagnetic environment surveillance along an in-service high-speed railway are also performed. The success to such a PIC marks a key step forward for practical and massive MWP implementations.



قيم البحث

اقرأ أيضاً

Microcombs - optical frequency combs generated in microresonators - have advanced tremendously in the last decade, and are advantageous for applications in frequency metrology, navigation, spectroscopy, telecommunications, and microwave photonics. Cr ucially, microcombs offer the prospect of fully integrated miniaturized optical systems with unprecedented reductions in cost, size, weight, and power. However, this goal has been consistently hindered by the use of bulk free-space and fiber-optic components to process microcombs, limiting form factors to the table-top. Here, we address this challenge by introducing an integrated photonics interposer architecture to process microcombs and replace discrete components. Taking microcomb-based optical frequency synthesis in the telecom C-band around 1550 nm as our target application, we develop an interposer architecture that collects, routes, and interfaces octave-wide optical signals between photonic chiplets and heterogeneously integrated devices that constitute the synthesizer. We have implemented the octave spanning spectral filtering of a microcomb, central to the interposer, in the popular silicon nitride photonic platform, and have confirmed the requisite performance of the individual elements of the interposer. Moreover, we show that the thick silicon nitride needed for bright dissipative Kerr soliton generation can be integrated with the comparatively thin silicon nitride interposer layer through octave-bandwidth adiabatic evanescent coupling, indicating a path towards future system-level consolidation. Our interposer architecture addresses the immediate need for on-chip microcomb processing to successfully miniaturize microcomb systems. As microcombs and integrated devices evolve, our approach can be readily adapted to other metrology-grade applications based on optical atomic clocks and high-precision navigation and spectroscopy.
198 - Lijie Zhao , Haiyun Xia , Yihua Hu 2020
A real-time ranging lidar with 0.1 Mega Hertz update rate and few-micrometer resolution incorporating dispersive Fourier transformation and instantaneous microwave frequency measurement is proposed and demonstrated. As time-stretched femtosecond lase r pulse passing through an all-fiber Mach-Zehnder Interferometer, where the detection light beam is inserted into the optical path of one arm, the displacement is encoded to the frequency variation of the temporal interferogram. To deal with the challenges in storage and real-time processing of the microwave pulse generated on a photodetector, we turn to all-optical signal processing. A carrier wave is modulated by the time-domain interferogram using an intensity modulator. After that, the frequency variation of the microwave pulse is uploaded to the first order sidebands. Finally, the frequency shift of the sidebands is turned into transmission change through a symmetric-locked frequency discriminator. In experiment, A real-time ranging system with adjustable dynamic range and detection sensitivity is realized by incorporating a programmable optical filter. Standard deviation of 7.64 {mu}m, overall mean error of 19.10 {mu}m over 15 mm detection range and standard deviation of 37.73 {mu}m, overall mean error of 36.63 {mu}m over 45 mm detection range are obtained respectively.
We report a compact, scalable, quantum photonic integrated circuit realised by combining multiple, independent InGaAs/GaAs quantum-light-emitting-diodes (QLEDs) with a silicon oxynitride waveguide circuit. Each waveguide joining the circuit can then be excited by a separate, independently electrically contacted QLED. We show that the emission from neighbouring QLEDs can be independently tuned to degeneracy using the Stark Effect and that the resulting photon streams are indistinguishable. This enables on-chip Hong-Ou-Mandel-type interference, as required for many photonic quantum information processing schemes.
Random number generators are essential to ensure performance in information technologies, including cryptography, stochastic simulations and massive data processing. The quality of random numbers ultimately determines the security and privacy that ca n be achieved, while the speed at which they can be generated poses limits to the utilisation of the available resources. In this work we propose and demonstrate a quantum entropy source for random number generation on an indium phosphide photonic integrated circuit made possible by a new design using two-laser interference and heterodyne detection. The resulting device offers high-speed operation with unprecedented security guarantees and reduced form factor. It is also compatible with complementary metal-oxide semiconductor technology, opening the path to its integration in computation and communication electronic cards, which is particularly relevant for the intensive migration of information processing and storage tasks from local premises to cloud data centres.
A photonic integrated circuit (PIC) comprised of an 11 cm multimode speckle waveguide, a 1x32 splitter, and a linear grating coupler array is fabricated and utilized to receive 2 GHz of radio-frequency (RF) signal bandwidth from 2.5 to 4.5 GHz using compressive sensing (CS). Incoming RF signals are modulated onto chirped optical pulses which are input to the multimode waveguide. The multimode waveguide produces the random projections needed for CS via optical speckle. The time-varying phase and amplitude of two test RF signals between 2.5 and 4.5 GHz are successfully recovered using the standard penalized $l_1$-norm method. The use of a passive PIC serves as an initial step towards the miniaturization of a compressive sensing RF receiver.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا