ترغب بنشر مسار تعليمي؟ اضغط هنا

REALab: An Embedded Perspective on Tampering

121   0   0.0 ( 0 )
 نشر من قبل Jonathan Uesato
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes REALab, a platform for embedded agency research in reinforcement learning (RL). REALab is designed to model the structure of tampering problems that may arise in real-world deployments of RL. Standard Markov Decision Process (MDP) formulations of RL and simulated environments mirroring the MDP structure assume secure access to feedback (e.g., rewards). This may be unrealistic in settings where agents are embedded and can corrupt the processes producing feedback (e.g., human supervisors, or an implemented reward function). We describe an alternative Corrupt Feedback MDP formulation and the REALab environment platform, which both avoid the secure feedback assumption. We hope the design of REALab provides a useful perspective on tampering problems, and that the platform may serve as a unit test for the presence of tampering incentives in RL agent designs.

قيم البحث

اقرأ أيضاً

We present an information-theoretic framework for understanding overfitting and underfitting in machine learning and prove the formal undecidability of determining whether an arbitrary classification algorithm will overfit a dataset. Measuring algori thm capacity via the information transferred from datasets to models, we consider mismatches between algorithm capacities and datasets to provide a signature for when a model can overfit or underfit a dataset. We present results upper-bounding algorithm capacity, establish its relationship to quantities in the algorithmic search framework for machine learning, and relate our work to recent information-theoretic approaches to generalization.
How can we design agents that pursue a given objective when all feedback mechanisms are influenceable by the agent? Standard RL algorithms assume a secure reward function, and can thus perform poorly in settings where agents can tamper with the rewar d-generating mechanism. We present a principled solution to the problem of learning from influenceable feedback, which combines approval with a decoupled feedback collection procedure. For a natural class of corruption functions, decoupled approval algorithms have aligned incentives both at convergence and for their local updates. Empirically, they also scale to complex 3D environments where tampering is possible.
As machine learning (ML) systems take a more prominent and central role in contributing to life-impacting decisions, ensuring their trustworthiness and accountability is of utmost importance. Explanations sit at the core of these desirable attributes of a ML system. The emerging field is frequently called ``Explainable AI (XAI) or ``Explainable ML. The goal of explainable ML is to intuitively explain the predictions of a ML system, while adhering to the needs to various stakeholders. Many explanation techniques were developed with contributions from both academia and industry. However, there are several existing challenges that have not garnered enough interest and serve as roadblocks to widespread adoption of explainable ML. In this short paper, we enumerate challenges in explainable ML from an industry perspective. We hope these challenges will serve as promising future research directions, and would contribute to democratizing explainable ML.
Graph convolutional networks (GCNs) have achieved promising performance on various graph-based tasks. However they suffer from over-smoothing when stacking more layers. In this paper, we present a quantitative study on this observation and develop no vel insights towards the deeper GCN. First, we interpret the current graph convolutional operations from an optimization perspective and argue that over-smoothing is mainly caused by the naive first-order approximation of the solution to the optimization problem. Subsequently, we introduce two metrics to measure the over-smoothing on node-level tasks. Specifically, we calculate the fraction of the pairwise distance between connected and disconnected nodes to the overall distance respectively. Based on our theoretical and empirical analysis, we establish a universal theoretical framework of GCN from an optimization perspective and derive a novel convolutional kernel named GCN+ which has lower parameter amount while relieving the over-smoothing inherently. Extensive experiments on real-world datasets demonstrate the superior performance of GCN+ over state-of-the-art baseline methods on the node classification tasks.
In this paper we argue for the fundamental importance of the value distribution: the distribution of the random return received by a reinforcement learning agent. This is in contrast to the common approach to reinforcement learning which models the e xpectation of this return, or value. Although there is an established body of literature studying the value distribution, thus far it has always been used for a specific purpose such as implementing risk-aware behaviour. We begin with theoretical results in both the policy evaluation and control settings, exposing a significant distributional instability in the latter. We then use the distributional perspective to design a new algorithm which applies Bellmans equation to the learning of approximate value distributions. We evaluate our algorithm using the suite of games from the Arcade Learning Environment. We obtain both state-of-the-art results and anecdotal evidence demonstrating the importance of the value distribution in approximate reinforcement learning. Finally, we combine theoretical and empirical evidence to highlight the ways in which the value distribution impacts learning in the approximate setting.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا