ﻻ يوجد ملخص باللغة العربية
We consider the global minimization of a polynomial on a compact set B. We show that each step of the Moment-SOS hierarchy has a nice and simple interpretation that complements the usual one. Namely, it computes coefficients of a polynomial in an orthonormal basis of L 2 (B, $mu$) where $mu$ is an arbitrary reference measure whose support is exactly B. The resulting polynomial is a certain density (with respect to $mu$) of some signed measure on B. When some relaxation is exact (which generically takes place) the coefficients of the optimal polynomial density are values of orthonormal polynomials at the global minimizer and the optimal (signed) density is simply related to the Christoffel-Darboux (CD) kernel and the Christoffel function associated with $mu$. In contrast to the hierarchy of upper bounds which computes positive densities, the global optimum can be achieved exactly as integration against a polynomial (signed) density because the CD-kernel is a reproducing kernel, and so can mimic a Dirac measure (as long as finitely many moments are concerned).
We introduce from an analytic perspective Christoffel-Darboux kernels associated to bounded, tracial noncommutative distributions. We show that properly normalized traces, respectively norms, of evaluations of such kernels on finite dimensional matri
The Clopper-Pearson confidence interval has ever been documented as an exact approach in some statistics literature. More recently, such approach of interval estimation has been introduced to probabilistic control theory and has been referred as non-
We extend balloon and sample-smoothing estimators, two types of variable-bandwidth kernel density estimators, by a shift parameter and derive their asymptotic properties. Our approach facilitates the unified study of a wide range of density estimator
Outlier detection methods have become increasingly relevant in recent years due to increased security concerns and because of its vast application to different fields. Recently, Pauwels and Lasserre (2016) noticed that the sublevel sets of the invers
The $hat B_n^{(1)}$-hierarchy is constructed from the standard splitting of the affine Kac-Moody algebra $hat B_n^{(1)}$, the Drinfeld-Sokolov $hat B_n^{(1)}$-KdV hierarchy is obtained by pushing down the $hat B_n^{(1)}$-flows along certain gauge orb