ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupled spin-1/2 antiferromagnetic chain Cs$_2$LiRuCl$_6$ with partially disordered crystal lattice

56   0   0.0 ( 0 )
 نشر من قبل Nobuyuki Kurita
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We determined the crystal structure of Cs$_2$LiRuCl$_6$, which was synthesized first in this work, and investigated its magnetic properties. Cs$_2$LiRuCl$_6$ has a hexagonal structure composed of linear chains of face-sharing RuCl$_6$ and LiCl$_6$ octahedra. In two-thirds of the structural chains, Ru$^{3+}$ and Li$^+$ sites are almost ordered, while in the other chains their sites are disordered. This situation is analogous to the ground state of the antiferromagnetic Ising model on a triangular lattice. Using electron paramagnetic resonance, we evaluated the $g$ factors of Ru$^{3+}$ with effective spin-1/2 as $g_c,{=},2.72$ and $g_{ab},{=},1.50$ for magnetic fields $H$ parallel and perpendicular to the $c$ axis, respectively. Magnetization curves for $H,{parallel},c$ and $H,{perp},c$ are highly anisotropic. However, these magnetization curves approximately coincide when normalized by the $g$ factors. It was found from the magnetization and specific heat results that Cs$_2$LiRuCl$_6$ can be described as a coupled one-dimensional $S,{=},1/2$ Heisenberg-like antiferromagnet with $J/k_{rm B},{simeq},3.7$ K. Three-dimensional ordering occurs at $T_{rm N},{=},0.48$ K. A magnetic phase diagram for $H,{parallel},c$ is also presented.

قيم البحث

اقرأ أيضاً

Elementary excitations of the S=1/2 one-dimensional antiferromagnet KCuGaF_6 were investigated by inelastic neutron scattering in zero and finite magnetic fields perpendicular to the (1, 1, 0) plane combined with specific heat measurements. KCuGaF$_6 $ exhibits no long-range magnetic ordering down to 50 mK despite the large exchange interaction J/k_B=103 K. At zero magnetic field, well-defined spinon excitations were observed. The energy of the des Cloizeaux and Pearson mode of the spinon excitations is somewhat larger than that calculated with the above exchange constant. This discrepancy is mostly ascribed to the effective XY anisotropy arising from the large Dzyaloshinsky-Moriya interaction with an alternating D vector. KCuGaF_6 in a magnetic field is represented by the quantum sine-Gordon model, for which low-energy elementary excitations are composed of solitons, antisolitons and their bound states called breathers. Unlike the theoretical prediction, it was found that the energy of a soliton is smaller than that of the first breather, although the energy of the first breather coincides with that observed in a previous ESR measurement.
We report on high-field electron spin resonance (ESR) studies of magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs$_2$CuBr$_4$. Frequency-field diagrams of ESR excitations are measured for different orientations of magnetic f ields up to 25 T. We show that the substantial zero-field energy gap, $Deltaapprox9.5$ K, observed in the low-temperature excitation spectrum of Cs$_2$CuBr$_4$ [Zvyagin $et~al.$, Phys. Rev. Lett. 112, 077206 (2014)], is present well above $T_N$. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below $T_N$ the high-energy spin dynamics in Cs$_2$CuBr$_4$ is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.
Spin-1/2 chains with alternating antiferromagnetic (AF) and ferromagnetic (FM) couplings exhibit quantum entanglement like the integer-spin Haldane chains and might be similarly utilized for quantum computations. Such alternating AF-FM chains have be en proposed to be realized in the distorted honeycomb-lattice compound Na$_2$Cu$_2$TeO$_6$, but to confirm this picture a comprehensive understanding of the exchange interactions including terms outside of the idealized model is required. Here we employ neutron scattering to study the spin dynamics in Na$_2$Cu$_2$TeO$_6$ and accurately determine the coupling strengths through the random phase approximation and density functional theory (DFT) approaches. We find the AF and FM intrachain couplings are the dominant terms in the spin Hamiltonian, while the interchain couplings are AF but perturbative. This hierarchy in the coupling strengths and the alternating signs of the intrachain couplings can be understood through their different exchange paths. Our results establish Na$_2$Cu$_2$TeO$_6$ as a weakly-coupled alternating AF-FM chain compound and reveal the robustness of the gapped ground state in alternating chains under weak interchain couplings.
101 - O. Breunig , M. Garst , E. Sela 2013
Comparing high-resolution specific heat and thermal expansion measurements to exact finite-size diagonalization, we demonstrate that Cs$_2$CoCl$_4$ for a magnetic field along the crystallographic b axis realizes the spin-$frac{1}{2}$ XXZ chain in a t ransverse field. Exploiting both thermal as well as virtual excitations of higher crystal field states, we find that the spin chain is in the XY-limit with an anisotropy $J_z/J_perp approx 0.12$ substantially smaller than previously believed. A spin-flop Ising quantum phase transition occurs at a critical field of $mu_0 H_b^{rm cr} approx 2$ T before around 3.5 T the description in terms of an effective spin-$frac{1}{2}$ chain becomes inapplicable.
60 - O. Breunig , M. Garst , A. Rosch 2014
In this study the magnetic order of the spin-1/2 XXZ chain system Cs$_2$CoCl$_4$ in a temperature range from 50 mK to 0.5 K and in applied magnetic fields up to 3.5 T is investigated by high-resolution measurements of the thermal expansion and the sp ecific heat. Applying magnetic fields along a or c suppresses $T_textrm{N}$ completely at about 2.1 T. In addition, we find an adjacent intermediate phase before the magnetization saturates close to 2.5 T. For magnetic fields applied along b, a surprisingly rich phase diagram arises. Two additional transitions are observed at critical fields $mu_0 H_{SF1}simeq 0.25$ T and $mu_0 H_{SF2}simeq 0.7$ T, which we propose to arise from a two-stage spin-flop transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا