ﻻ يوجد ملخص باللغة العربية
With gate error rates in multiple technologies now below the threshold required for fault-tolerant quantum computation, the major remaining obstacle to useful quantum computation is scaling, a challenge greatly amplified by the huge overhead imposed by quantum error correction itself. We propose a fault-tolerant quantum computing scheme that can nonetheless be assembled from a small number of experimental components, potentially dramatically reducing the engineering challenges associated with building a large-scale fault-tolerant quantum computer. Our scheme has a threshold of 0.39% for depolarising noise, assuming that memory errors are negligible. In the presence of memory errors, the logical error rate decays exponentially with $sqrt{T/tau}$, where $T$ is the memory coherence time and $tau$ is the timescale for elementary gates. Our approach is based on a novel procedure for fault-tolerantly preparing three-dimensional cluster states using a single actively controlled qubit and a pair of delay lines. Although a circuit-level error may propagate to a high-weight error, the effect of this error on the prepared state is always equivalent to that of a constant-weight error. We describe how the requisite gates can be implemented using existing technologies in quantum photonic and phononic systems. With continued improvements in only a few components, we expect these systems to be promising candidates for demonstrating fault-tolerant quantum computation with a comparatively modest experimental effort.
Recent progress in quantum information has led to the start of several large national and industrial efforts to build a quantum computer. Researchers are now working to overcome many scientific and technological challenges. The programs biggest obsta
Solid-state spin qubits are a promising platform for quantum computation and quantum networks. Recent experiments have demonstrated high-quality control over multi-qubit systems, elementary quantum algorithms and non-fault-tolerant error correction.
Recently, Hastings & Haah introduced a quantum memory defined on the honeycomb lattice. Remarkably, this honeycomb code assembles weight-six parity checks using only two-local measurements. The sparse connectivity and two-local measurements are desir
We propose a protocol to implement multi-qubit geometric gates (i.e., the M{o}lmer-S{o}rensen gate) using photonic cat qubits. These cat qubits stored in high-$Q$ resonators are promising for hardware-efficient universal quantum computing. Specifical
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.