ترغب بنشر مسار تعليمي؟ اضغط هنا

Fault-tolerant qubit from a constant number of components

70   0   0.0 ( 0 )
 نشر من قبل Kianna Wan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With gate error rates in multiple technologies now below the threshold required for fault-tolerant quantum computation, the major remaining obstacle to useful quantum computation is scaling, a challenge greatly amplified by the huge overhead imposed by quantum error correction itself. We propose a fault-tolerant quantum computing scheme that can nonetheless be assembled from a small number of experimental components, potentially dramatically reducing the engineering challenges associated with building a large-scale fault-tolerant quantum computer. Our scheme has a threshold of 0.39% for depolarising noise, assuming that memory errors are negligible. In the presence of memory errors, the logical error rate decays exponentially with $sqrt{T/tau}$, where $T$ is the memory coherence time and $tau$ is the timescale for elementary gates. Our approach is based on a novel procedure for fault-tolerantly preparing three-dimensional cluster states using a single actively controlled qubit and a pair of delay lines. Although a circuit-level error may propagate to a high-weight error, the effect of this error on the prepared state is always equivalent to that of a constant-weight error. We describe how the requisite gates can be implemented using existing technologies in quantum photonic and phononic systems. With continued improvements in only a few components, we expect these systems to be promising candidates for demonstrating fault-tolerant quantum computation with a comparatively modest experimental effort.



قيم البحث

اقرأ أيضاً

150 - John M. Martinis 2015
Recent progress in quantum information has led to the start of several large national and industrial efforts to build a quantum computer. Researchers are now working to overcome many scientific and technological challenges. The programs biggest obsta cle, a potential showstopper for the entire effort, is the need for high-fidelity qubit operations in a scalable architecture. This challenge arises from the fundamental fragility of quantum information, which can only be overcome with quantum error correction. In a fault-tolerant quantum computer the qubits and their logic interactions must have errors below a threshold: scaling up with more and more qubits then brings the net error probability down to appropriate levels ~ $10^{-18}$ needed for running complex algorithms. Reducing error requires solving problems in physics, control, materials and fabrication, which differ for every implementation. I explain here the common key driver for continued improvement - the metrology of qubit errors.
Solid-state spin qubits are a promising platform for quantum computation and quantum networks. Recent experiments have demonstrated high-quality control over multi-qubit systems, elementary quantum algorithms and non-fault-tolerant error correction. Large-scale systems will require using error-corrected logical qubits that are operated fault-tolerantly, so that reliable computation is possible despite noisy operations. Overcoming imperfections in this way remains a major outstanding challenge for quantum science. Here, we demonstrate fault-tolerant operations on a logical qubit using spin qubits in diamond. Our approach is based on the 5-qubit code with a recently discovered flag protocol that enables fault-tolerance using a total of seven qubits. We encode the logical qubit using a novel protocol based on repeated multi-qubit measurements and show that it outperforms non-fault-tolerant encoding schemes. We then fault-tolerantly manipulate the logical qubit through a complete set of single-qubit Clifford gates. Finally, we demonstrate flagged stabilizer measurements with real-time processing of the outcomes. Such measurements are a primitive for fault-tolerant quantum error correction. While future improvements in fidelity and the number of qubits will be required, our realization of fault-tolerant protocols on the logical-qubit level is a key step towards large-scale quantum information processing based on solid-state spins.
Recently, Hastings & Haah introduced a quantum memory defined on the honeycomb lattice. Remarkably, this honeycomb code assembles weight-six parity checks using only two-local measurements. The sparse connectivity and two-local measurements are desir able features for certain hardware, while the weight-six parity checks enable robust performance in the circuit model. In this work, we quantify the robustness of logical qubits preserved by the honeycomb code using a correlated minimum-weight perfect-matching decoder. Using Monte Carlo sampling, we estimate the honeycomb codes threshold in different error models, and project how efficiently it can reach the teraquop regime where trillions of quantum logical operations can be executed reliably. We perform the same estimates for the rotated surface code, and find a threshold of $0.2%-0.3%$ for the honeycomb code compared to a threshold of $0.5%-0.7%$ for the surface code in a controlled-not circuit model. In a circuit model with native two-body measurements, the honeycomb code achieves a threshold of $1.5% < p <2.0%$, where $p$ is the collective error rate of the two-body measurement gate - including both measurement and correlated data depolarization error processes. With such gates at a physical error rate of $10^{-3}$, we project that the honeycomb code can reach the teraquop regime with only $600$ physical qubits.
We propose a protocol to implement multi-qubit geometric gates (i.e., the M{o}lmer-S{o}rensen gate) using photonic cat qubits. These cat qubits stored in high-$Q$ resonators are promising for hardware-efficient universal quantum computing. Specifical ly, in the limit of strong two-photon drivings, phase-flip errors of the cat qubits are effectively suppressed, leaving only a bit-flip error to be corrected. A geometric evolution guarantees the robustness of the protocol against stochastic noise along the evolution path. Moreover, by changing detunings of the cavity-cavity couplings at a proper time, the protocol can be robust against control imperfections (e.g., the total evolution time) without introducing extra noises into the system. As a result, the gate can produce multi-mode entangled cat states in a short time with high fidelities.
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا