ﻻ يوجد ملخص باللغة العربية
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
We review an approach to fault-tolerant holonomic quantum computation on stabilizer codes. We explain its workings as based on adiabatic dragging of the subsystem containing the logical information around suitable loops along which the information remains protected.
Certain physical systems that one might consider for fault-tolerant quantum computing where qubits do not readily interact, for instance photons, are better suited for measurement-based quantum-computational protocols. Here we propose a measurement-b
Reliable qubits are difficult to engineer, but standard fault-tolerance schemes use seven or more physical qubits to encode each logical qubit, with still more qubits required for error correction. The large overhead makes it hard to experiment with
We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprote
Topological error correcting codes, and particularly the surface code, currently provide the most feasible roadmap towards large-scale fault-tolerant quantum computation. As such, obtaining fast and flexible decoding algorithms for these codes, withi