ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the relationship between 150MHz luminosity and star formation rate (the SFR-L150 relation) using 150MHz measurements for a near-infrared selected sample of 118,517 $z<1$ galaxies. New radio survey data offer compelling advantages for studying star formation in galaxies, with huge increases in sensitivity, survey speed and resolution over previous generation surveys, and remaining impervious to extinction. The LOFAR Surveys Key Science Project is transforming our understanding of the low-frequency radio sky, with the 150MHz data over the ELAIS-N1 field reaching an RMS sensitivity of 20uJy/beam over 10 deg$^2$ at 6 resolution. All of the galaxies studied have SFR and stellar mass estimates derived from energy balance SED fitting, using redshifts and aperture-matched forced photometry from the LOFAR Two-metre Sky Survey (LoTSS) deep fields data release. The impact of active galactic nuclei is minimised by leveraging the deep ancillary data alongside outlier-resistant median-likelihood methods. We find a linear and non-evolving SFR-L150 relation, apparently consistent with expectations based on calorimetric arguments, down to the lowest SFRs. However, we also recover compelling evidence for stellar mass dependence in line with previous work on this topic, in the sense that higher mass galaxies have a larger 150MHz luminosity at a given SFR, suggesting that the overall agreement with calorimetric arguments may be a coincidence. We conclude that in the absence of AGN, 150MHz observations can be used to measure accurate galaxy SFRs out to $z=1$ at least, but it is necessary to account for stellar mass in order to obtain 150MHz-derived SFRs accurate to <0.5 dex. Our best-fit relation is $log_{10} (L_mathrm{150 MHz} / W,Hz^{-1}) = (0.90pm 0.01) log_{10}(psi/M_odot,mathrm{yr}^{-1}) + (0.33 pm 0.04) log_{10} (M/10^{10}M_odot) + 22.22 pm 0.02$. (Abridged)
We have exploited LOFAR deep observations of the Lockman Hole field at 150 MHz to investigate the relation between the radio luminosity of star-forming galaxies (SFGs) and their star formation rates (SFRs), as well as its dependence on stellar mass a
The LOFAR Two-metre Sky Survey (LoTSS) will cover the full northern sky and, additionally, aims to observe the LoTSS deep fields to a noise level of ~10 microJy/bm over several tens of square degrees in areas that have the most extensive ancillary da
Radio emission is a key indicator of star-formation activity in galaxies, but the radio luminosity-star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies the effects of therm
Low-frequency radio observations are revealing an increasing number of diffuse synchrotron sources from galaxy clusters, dominantly in the form of radio halos or radio relics. The existence of this diffuse synchrotron emission indicates the presence
We present a new analysis of the widely used relation between cavity power and radio luminosity in clusters of galaxies with evidence for strong AGN feedback. We study the correlation at low radio frequencies using two new surveys - the First Alterna