ترغب بنشر مسار تعليمي؟ اضغط هنا

LOFAR MSSS: The Scaling Relation between AGN Cavity Power and Radio Luminosity at Low Radio Frequencies

82   0   0.0 ( 0 )
 نشر من قبل Georgi Kokotanekov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new analysis of the widely used relation between cavity power and radio luminosity in clusters of galaxies with evidence for strong AGN feedback. We study the correlation at low radio frequencies using two new surveys - the First Alternative Data Release of the TIFR GMRT Sky Survey (TGSS ADR1) at 148 MHz and LOFARs first all-sky survey, the Multifrequency Snapshot Sky Survey (MSSS) at 140 MHz. We find a scaling relation $P_{rm cav} propto L_{148}^{beta}$, with a logarithmic slope of $beta = 0.51 pm 0.14$, which is in good agreement with previous results based on data at 327 MHz. The large scatter present in this correlation confirms the conclusion reached at higher frequencies that the total radio luminosity at a single frequency is a poor predictor of the total jet power. We show that including measurements at 148 MHz alone is insufficient to reliably compute the bolometric radio luminosity and reduce the scatter in the correlation. For a subset of four well-resolved sources, we examine the detected extended structures at low frequencies and compare with the morphology known from higher frequency images and Chandra X-ray maps. In Perseus we discuss details in the structures of the radio mini-halo, while in the 2A 0335+096 cluster we observe new diffuse emission associated with multiple X-ray cavities and likely originating from past activity. For A2199 and MS 0735.6+7421, we confirm that the observed low-frequency radio lobes are confined to the extents known from higher frequencies. This new low-frequency analysis highlights the fact that existing cavity power to radio luminosity relations are based on a relatively narrow range of AGN outburst ages. We discuss how the correlation could be extended using low frequency data from the LOFAR Two-metre Sky Survey (LoTSS) in combination with future, complementary deeper X-ray observations.


قيم البحث

اقرأ أيضاً

In this paper, we investigate the relationship between 150MHz luminosity and star formation rate (the SFR-L150 relation) using 150MHz measurements for a near-infrared selected sample of 118,517 $z<1$ galaxies. New radio survey data offer compelling a dvantages for studying star formation in galaxies, with huge increases in sensitivity, survey speed and resolution over previous generation surveys, and remaining impervious to extinction. The LOFAR Surveys Key Science Project is transforming our understanding of the low-frequency radio sky, with the 150MHz data over the ELAIS-N1 field reaching an RMS sensitivity of 20uJy/beam over 10 deg$^2$ at 6 resolution. All of the galaxies studied have SFR and stellar mass estimates derived from energy balance SED fitting, using redshifts and aperture-matched forced photometry from the LOFAR Two-metre Sky Survey (LoTSS) deep fields data release. The impact of active galactic nuclei is minimised by leveraging the deep ancillary data alongside outlier-resistant median-likelihood methods. We find a linear and non-evolving SFR-L150 relation, apparently consistent with expectations based on calorimetric arguments, down to the lowest SFRs. However, we also recover compelling evidence for stellar mass dependence in line with previous work on this topic, in the sense that higher mass galaxies have a larger 150MHz luminosity at a given SFR, suggesting that the overall agreement with calorimetric arguments may be a coincidence. We conclude that in the absence of AGN, 150MHz observations can be used to measure accurate galaxy SFRs out to $z=1$ at least, but it is necessary to account for stellar mass in order to obtain 150MHz-derived SFRs accurate to <0.5 dex. Our best-fit relation is $log_{10} (L_mathrm{150 MHz} / W,Hz^{-1}) = (0.90pm 0.01) log_{10}(psi/M_odot,mathrm{yr}^{-1}) + (0.33 pm 0.04) log_{10} (M/10^{10}M_odot) + 22.22 pm 0.02$. (Abridged)
Our understanding of how AGN feedback operates in galaxy clusters has improved in recent years owing to large efforts in multi-wavelength observations and hydrodynamical simulations. However, it is much less clear how feedback operates in galaxy grou ps, which have shallower gravitational potentials. In this work, using very deep VLA and new MeerKAT observations from the MIGHTEE survey, we compiled a sample of 247 X-ray selected galaxy groups detected in the COSMOS field. We have studied the relation between the X-ray emission of the intra-group medium and the 1.4 GHz radio emission of the central radio galaxy. For comparison, we have also built a control sample of 142 galaxy clusters using ROSAT and NVSS data. We find that clusters and groups follow the same correlation between X-ray and radio emission. Large radio galaxies hosted in the centres of groups and merging clusters increase the scatter of the distribution. Using statistical tests and Monte-Carlo simulations, we show that the correlation is not dominated by biases or selection effects. We also find that galaxy groups are more likely than clusters to host large radio galaxies, perhaps owing to the lower ambient gas density or a more efficient accretion mode. In these groups, radiative cooling of the ICM could be less suppressed by AGN heating. We conclude that the feedback processes that operate in galaxy clusters are also effective in groups.
The shape of low-frequency radio continuum spectra of normal galaxies is not well understood, the key question being the role of physical processes such as thermal absorption in shaping them. In this work we take advantage of the LOFAR Multifrequency Snapshot Sky Survey (MSSS) to investigate such spectra for a large sample of nearby star-forming galaxies. Using the measured 150MHz flux densities from the LOFAR MSSS survey and literature flux densities at various frequencies we have obtained integrated radio spectra for 106 galaxies. The spectra are explained through the use of a three-dimensional model of galaxy radio emission, and radiation transfer dependent on the galaxy viewing angle and absorption processes. Spectra of our galaxies are generally flatter at lower compared to higher frequencies but as there is no tendency for the highly inclined galaxies to have more flattened low-frequency spectra, we argue that the observed flattening is not due to thermal absorption, contradicting the suggestion of Israel & Mahoney (1990). According to our modelled radio maps for M51-like galaxies, the free-free absorption effects can be seen only below 30MHz and in the global spectra just below 20MHz, while in the spectra of starburst galaxies, like M82, the flattening due to absorption is instead visible up to higher frequencies of about 150MHz. Locally, within galactic disks, the absorption effects are distinctly visible in M51-like galaxies as spectral flattening around 100-200MHz in the face-on objects, and as turnovers in the edge-on ones, while in M82-like galaxies there are strong turnovers at frequencies above 700MHz, regardless of viewing angle. Our modelling suggests that the weak spectral flattening observed in the nearby galaxies studied here results principally from synchrotron spectral curvature due to cosmic ray energy losses and propagation effects.
Radio emission is a key indicator of star-formation activity in galaxies, but the radio luminosity-star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies the effects of therm al radio emission are greatly reduced, and so we would expect the radio emission observed to be completely dominated by synchrotron radiation from supernova-generated cosmic rays. As part of the LOFAR Surveys Key Science project, the Herschel-ATLAS NGP field has been surveyed with LOFAR at an effective frequency of 150 MHz. We select a sample from the MPA-JHU catalogue of SDSS galaxies in this area: the combination of Herschel, optical and mid-infrared data enable us to derive star-formation rates (SFRs) for our sources using spectral energy distribution fitting, allowing a detailed study of the low-frequency radio luminosity--star-formation relation in the nearby Universe. For those objects selected as star-forming galaxies (SFGs) using optical emission line diagnostics, we find a tight relationship between the 150 MHz radio luminosity ($L_{150}$) and SFR. Interestingly, we find that a single power-law relationship between $L_{150}$ and SFR is not a good description of all SFGs: a broken power law model provides a better fit. This may indicate an additional mechanism for the generation of radio-emitting cosmic rays. Also, at given SFR, the radio luminosity depends on the stellar mass of the galaxy. Objects which were not classified as SFGs have higher 150-MHz radio luminosity than would be expected given their SFR, implying an important role for low-level active galactic nucleus activity.
We constrain the behavior of the radio luminosity function (RLF) of two classes of active galactic nuclei (AGN) namely AGN of low radio power (LRP) and BL Lac objects. The extrapolation of the observed steep RLFs to low power predicts a space density of such objects that exceeds that of the sources that can harbor them and this requires a break to a shallower slope. For LRP AGN we obtain P_br,LRP > 10^20.5 W/Hz at 1.4 GHz to limit their density to be smaller than that of elliptical galaxies with black hole masses M_BH > 10^7.5 solar masses. By combining this value with the limit derived by the observations the break must occur at P_br,LRP~10^20.5-10^21.5 W/Hz. For BL Lacs we find P_br,BLLAC > 10^23.3 W/Hz otherwise they would outnumber the density of weak-lined and compact radio sources, while the observations indicate P_br,BLLAC < 10^24.5 W/Hz. In the framework of the AGN unified model a low luminosity break in the RLF of LRP AGN must correspond to a break in the RLF of BL Lacs. The ratio between P_br,LRP and P_br,BLLAC is ~10^3, as expected for a jet Doppler factor of ~10.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا