ﻻ يوجد ملخص باللغة العربية
In this work, we investigate the dynamical state of the galaxy cluster Abell 2631, a massive structure located at the core of the Saraswati supercluster. To do this, we first solve a tension found in the literature regarding the weak-lensing mass determination of the cluster. We do this through a comprehensive weak-lensing analysis, exploring the power of the combination of shear and magnification data sets. We find $M_{200}^{rm wl} = 8.7_{-2.9}^{+2.5} times 10^{14}$ M$_odot$. We also determined the mass based on the dynamics of spectroscopic members, corresponding to $M_{200}^{rm dy} = 12.2pm3.0 times 10^{14}$ M$_odot$, consistent within a 68 per cent CL with the weak-lensing estimate. The scenarios provided by the mass distribution and dynamics of galaxies are reconciled with those provided by X-ray observations in a scenario where A2631 is observed at a late stage of merging.
We use imaging from the first three years of the Dark Energy Survey to characterize the dynamical state of 288 galaxy clusters at $0.1 lesssim z lesssim 0.9$ detected in the South Pole Telescope (SPT) Sunyaev-Zeldovich (SZ) effect survey (SPT-SZ). We
We have selected a sample of eleven massive clusters of galaxies observed by the Hubble Space Telescope in order to study the impact of the dynamical state on the IntraCluster Light (ICL) fraction, the ratio of total integrated ICL to the total galax
We present a combined strong and weak lensing analysis of the J085007.6+360428 (J0850) field, which was selected by its high projected concentration of luminous red galaxies and contains the massive cluster Zwicky 1953. Using Subaru/Suprime-Cam $BVR_
We study the mass distribution of a sample of 24 X-ray bright Abell clusters through weak gravitational lensing. This method is independent of the dynamical state of the galaxy cluster. Hence, by comparing dynamical and lensing mass estimators, we ca
We present an optical study of the strong lensing galaxy cluster MS 0440.5$+$0204 at $z=0.19593$, based on CFHT/MegaCam g, r-photometry and GMOS/Gemini and CFHT/MOS/SIS spectroscopy in a broader area compared to previous works. We have determined new