ترغب بنشر مسار تعليمي؟ اضغط هنا

The dynamical state of massive galaxy clusters

79   0   0.0 ( 0 )
 نشر من قبل Eduardo Cypriano Serra
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the mass distribution of a sample of 24 X-ray bright Abell clusters through weak gravitational lensing. This method is independent of the dynamical state of the galaxy cluster. Hence, by comparing dynamical and lensing mass estimators, we can access the dynamical state of these clusters. We have found that clusters with ICM temperatures above 8 keV show strong deviations from the relaxation, as well as the presence of prominent sub-structures. For the remaining clusters (the majority of the sample) we have found agreement among the several mass estimators, which indicates that most of the clusters are in or close to a state of dynamical equilibrium.

قيم البحث

اقرأ أيضاً

Massive galaxy clusters are the most violent large scale structures undergoing merger events in the Universe. Based upon their morphological properties in X-rays, they are classified as un-relaxed and relaxed clusters and often host (a fraction of th em) different types of non-thermal radio emitting components, viz., haloes, mini-haloes, relics and phoenix within their Intra Cluster Medium (ICM). The radio haloes show steep (alpha = -1.2) and ultra steep (alpha < -1.5) spectral properties at low radio frequencies, giving important insights on the merger (pre or post) state of the cluster. Ultra steep spectrum radio halo emissions are rare and expected to be the dominating population to be discovered via LOFAR and SKA in the future. Further, the distribution of matter (morphological information), alignment of hot X-ray emitting gas from the ICM with the total mass (dark + baryonic matter) and the bright cluster galaxy (BCG) is generally used to study the dynamical state of the cluster. We present here a multi wavelength study on 14 massive clusters from the CLASH survey and show the correlation between the state of their merger in X-ray and spectral properties (1.4 GHz - 150 MHz) at radio wavelengths. Using the optical data we also discuss about the gas-mass alignment, in order to understand the interplay between dark and baryonic matter in massive galaxy clusters.
We use imaging from the first three years of the Dark Energy Survey to characterize the dynamical state of 288 galaxy clusters at $0.1 lesssim z lesssim 0.9$ detected in the South Pole Telescope (SPT) Sunyaev-Zeldovich (SZ) effect survey (SPT-SZ). We examine spatial offsets between the position of the brightest cluster galaxy (BCG) and the center of the gas distribution as traced by the SPT-SZ centroid and by the X-ray centroid/peak position from Chandra and XMM data. We show that the radial distribution of offsets provides no evidence that SPT SZ-selected cluster samples include a higher fraction of mergers than X-ray-selected cluster samples. We use the offsets to classify the dynamical state of the clusters, selecting the 43 most disturbed clusters, with half of those at $z gtrsim 0.5$, a region seldom explored previously. We find that Schechter function fits to the galaxy population in disturbed clusters and relaxed clusters differ at $z>0.55$ but not at lower redshifts. Disturbed clusters at $z>0.55$ have steeper faint-end slopes and brighter characteristic magnitudes. Within the same redshift range, we find that the BCGs in relaxed clusters tend to be brighter than the BCGs in disturbed samples, while in agreement in the lower redshift bin. Possible explanations includes a higher merger rate, and a more efficient dynamical friction at high redshift. The red-sequence population is less affected by the cluster dynamical state than the general galaxy population.
We have selected a sample of eleven massive clusters of galaxies observed by the Hubble Space Telescope in order to study the impact of the dynamical state on the IntraCluster Light (ICL) fraction, the ratio of total integrated ICL to the total galax y member light. With the exception of the Bullet cluster, the sample is drawn from the Cluster Lensing and Supernova Survey and the Frontier Fields program, containing five relaxed and six merging clusters. The ICL fraction is calculated in three optical filters using the CHEFs IntraCluster Light Estimator, a robust and accurate algorithm free of a priori assumptions. We find that the ICL fraction in the three bands is, on average, higher for the merging clusters, ranging between $sim7-23%$, compared with the $sim 2-11%$ found for the relaxed systems. We observe a nearly constant value (within the error bars) in the ICL fraction of the regular clusters at the three wavelengths considered, which would indicate that the colors of the ICL and the cluster galaxies are, on average, coincident and, thus, their stellar populations. However, we find a higher ICL fraction in the F606W filter for the merging clusters, consistent with an excess of lower-metallicity/younger stars in the ICL, which could have migrated violently from the outskirts of the infalling galaxies during the merger event.
We study the dynamical state and the integrated total mass profiles of 75 massive (M500 > 5 e+14 M_sun) SZ-selected clusters at 0.08<z< 1.1. The sample is built from the Planck catalogue, with the addition of 4 SPT clusters at z>0.9. Using XMM imagin g observations, we characterise the dynamical state with the centroid shift, the concentration, and their combination, M, which simultaneously probes the core and the large scale gas morphology. Using spatially-resolved spectroscopy and assuming hydrostatic equilibrium, we derive the total integrated mass profiles. The mass profile shape is quantified by the sparsity, the ratio of M500 to M2500, the masses at density contrast 500 and 2500, respectively. We study the correlations between the various parameters and their dependence on redshift. We confirm that SZ-selected samples, thought to reflect most closely the underlying cluster population, are dominated by disturbed and non-cool core objects at all z. There is no significant evolution or mass dependence of either the cool core fraction or the centroid shift parameter. The M parameter evolves slightly with z, having a correlation coefficient of rho= -0.2 $pm$ 0.1 and a null hypothesis p-value of 0.01. In the high mass regime considered here, the sparsity evolves minimally with redshift, increasing by 10% between z<0.2 and z>0.55, an effect significant at less than 2 sigma. In contrast, the dependence of the sparsity on dynamical state is much stronger, increasing by a factor of $sim$60% from the 1/3 most relaxed to the 1/3 most disturbed objects, an effect significant at more than 3 sigma. This is the first observational evidence that the shape of the integrated total mass profile in massive clusters is principally governed by the dynamical state, and is only mildly dependent on redshift. We discuss the consequences for the comparison between observations and theoretical predictions.
In the hierarchical scenario of structure formation, galaxy clusters are the ultimate virialised products in mass and time. Hot baryons in the intracluster medium (ICM) and cold baryons in galaxies inhabit a dark matter dominated halo. Internal proce sses, accretion, and mergers can perturb the equilibrium, which is established only at later times. However, the cosmic time when thermalisation is effective is still to be assessed. Here we show that massive clusters in the observed universe attained an advanced thermal equilibrium $sim~1.8~text{Gyr}$ ago, at redshift $z =0.14pm0.06$, when the universe was $11.7pm0.7~text{Gyr}$ old. Hot gas is mostly thermalised after the time when cosmic densities of matter and dark energy match. We find in a statistically nearly complete and homogeneous sample of 120 clusters from the {it Planck} Early Sunyaev-Zeldovich (ESZ) sample that the kinetic energy traced by the galaxy velocity dispersion is a faithful probe of the gravitational energy since a look back time of at least $sim5.4~text{Gyr}$, whereas the efficiency of hot gas in converting kinetic to thermal energy, as measured through X-ray observations in the core-excised area within $r_{500}$, steadily increases with time. The evolution is detected at the $sim 98$ per cent probability level. Our results demonstrate that halo mass accretion history plays a larger role for cluster thermal equilibrium than radiative physics. The evolution of hot gas is strictly connected to the cosmic structure formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا