ﻻ يوجد ملخص باللغة العربية
This study aims to quantify community resilience based on fluctuations in the visits to various Point-of-Interest (POIs) locations. Visit to POIs is an essential indicator of human activities and captures the combined effects of perturbations in people lifestyles, built environment conditions, and businesses status. The study utilized digital trace data of unique visits to POIs in the context of the 2017 Hurricane Harvey in Houston (Texas, USA) to examine spatial patterns of impact and total recovery effort and utilized these measures to quantify community resilience. The results showed that certain POI categories such as building materials and supplies dealers and grocery stores were the most resilient elements of the community compared to the other POI categories. On the other hand, categories such as medical facilities and entertainment were found to have lower resilience values. This result suggests that these categories were either not essential for community recovery or that the community was not able to access these services at normal levels immediately after the hurricane. In addition, the spatial analyses revealed that many areas in the community with lower levels of resilience experienced extensive flooding. However, some areas with low resilience were not flooded extensively, suggesting that spatial reach of the impacts goes beyond flooded areas. The results demonstrate the importance of the approach proposed in our study. While this study focused on Houston and only analysed one natural hazard, the approach can be applied to other communities and disaster contexts. Applying this approach, emergency managers and public officials can efficiently monitor the patterns of disaster impacts and recovery across different spatial areas and POI categories and also identify POI categories and areas of their community that need to be prioritized for resource allocation.
Epidemic propagation on complex networks has been widely investigated, mostly with invariant parameters. However, the process of epidemic propagation is not always constant. Epidemics can be affected by various perturbations, and may bounce back to i
In cerebrovascular networks, some vertices are more connected to each other than with the rest of the vasculature, defining a community structure. Here, we introduce a class of model networks built by rewiring Random Regular Graphs, which enables to
Community detection or clustering is a crucial task for understanding the structure of complex systems. In some networks, nodes are permitted to be linked by either positive or negative edges; such networks are called signed networks. Discovering com
Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme difficulty in accessing the human mind from obs
Grouping objects into clusters based on similarities or weights between them is one of the most important problems in science and engineering. In this work, by extending message passing algorithms and spectral algorithms proposed for unweighted commu