ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient algorithm based on non-backtracking matrix for community detection in signed networks

91   0   0.0 ( 0 )
 نشر من قبل Cunquan Qu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Community detection or clustering is a crucial task for understanding the structure of complex systems. In some networks, nodes are permitted to be linked by either positive or negative edges; such networks are called signed networks. Discovering communities in signed networks is more challenging than that in unsigned networks. In this study, we innovatively develop a non-backtracking matrix of signed networks, theoretically derive a detectability threshold for this matrix, and demonstrate the feasibility of using the matrix for community detection. We further improve the developed matrix by considering the balanced paths in the network (referred to as a balanced non-backtracking matrix). Simulation results demonstrate that the algorithm based on the balanced nonbacktracking matrix significantly outperforms those based on the adjacency matrix and the signed non-backtracking matrix. The proposed (improved) matrix shows great potential for detecting communities with or without overlap.



قيم البحث

اقرأ أيضاً

Time-stamped data are increasingly available for many social, economic, and information systems that can be represented as networks growing with time. The World Wide Web, social contact networks, and citation networks of scientific papers and online news articles, for example, are of this kind. Static methods can be inadequate for the analysis of growing networks as they miss essential information on the systems dynamics. At the same time, time-aware methods require the choice of an observation timescale, yet we lack principled ways to determine it. We focus on the popular community detection problem which aims to partition a networks nodes into meaningful groups. We use a multi-layer quality function to show, on both synthetic and real datasets, that the observation timescale that leads to optimal communities is tightly related to the systems intrinsic aging timescale that can be inferred from the time-stamped network data. The use of temporal information leads to drastically different conclusions on the community structure of real information networks, which challenges the current understanding of the large-scale organization of growing networks. Our findings indicate that before attempting to assess structural patterns of evolving networks, it is vital to uncover the timescales of the dynamical processes that generated them.
The spectrum of the non-backtracking matrix plays a crucial role in determining various structural and dynamical properties of networked systems, ranging from the threshold in bond percolation and non-recurrent epidemic processes, to community struct ure, to node importance. Here we calculate the largest eigenvalue of the non-backtracking matrix and the associated non-backtracking centrality for uncorrelated random networks, finding expressions in excellent agreement with numerical results. We show however that the same formulas do not work well for many real-world networks. We identify the mechanism responsible for this violation in the localization of the non-backtracking centrality on network subgraphs whose formation is highly unlikely in uncorrelated networks, but rather common in real-world structures. Exploiting this knowledge we present an heuristic generalized formula for the largest eigenvalue, which is remarkably accurate for all networks of a large empirical dataset. We show that this newly uncovered localization phenomenon allows to understand the failure of the message-passing prediction for the percolation threshold in many real-world structures.
173 - Chao Yan , Hui-Min Cheng , Xin Liu 2018
Community structures detection in signed network is very important for understanding not only the topology structures of signed networks, but also the functions of them, such as information diffusion, epidemic spreading, etc. In this paper, we develo p a joint nonnegative matrix factorization model to detect community structures. In addition, we propose modified partition density to evaluate the quality of community structures. We use it to determine the appropriate number of communities. The effectiveness of our approach is demonstrated based on both synthetic and real-world networks.
Networks are a convenient way to represent complex systems of interacting entities. Many networks contain communities of nodes that are more densely connected to each other than to nodes in the rest of the network. In this paper, we investigate the d etection of communities in temporal networks represented as multilayer networks. As a focal example, we study time-dependent financial-asset correlation networks. We first argue that the use of the modularity quality function---which is defined by comparing edge weights in an observed network to expected edge weights in a null network---is application-dependent. We differentiate between null networks and null models in our discussion of modularity maximization, and we highlight that the same null network can correspond to different null models. We then investigate a multilayer modularity-maximization problem to identify communities in temporal networks. Our multilayer analysis only depends on the form of the maximization problem and not on the specific quality function that one chooses. We introduce a diagnostic to measure emph{persistence} of community structure in a multilayer network partition. We prove several results that describe how the multilayer maximization problem measures a trade-off between static community structure within layers and larger values of persistence across layers. We also discuss some computational issues that the popular Louvain heuristic faces with temporal multilayer networks and suggest ways to mitigate them.
We consider an approach for community detection in time-varying networks. At its core, this approach maintains a small sketch graph to capture the essential community structure found in each snapshot of the full network. We demonstrate how the sketch can be used to explicitly identify six key community events which typically occur during network evolution: growth, shrinkage, merging, splitting, birth and death. Based on these detection techniques, we formulate a community detection algorithm which can process a network concurrently exhibiting all processes. One advantage afforded by the sketch-based algorithm is the efficient handling of large networks. Whereas detecting events in the full graph may be computationally expensive, the small size of the sketch allows changes to be quickly assessed. A second advantage occurs in networks containing clusters of disproportionate size. The sketch is constructed such that there is equal representation of each cluster, thus reducing the possibility that the small clusters are lost in the estimate. We present a new standardized benchmark based on the stochastic block model which models the addition and deletion of nodes, as well as the birth and death of communities. When coupled with existing benchmarks, this new benchmark provides a comprehensive suite of tests encompassing all six community events. We provide a set of numerical results demonstrating the advantages of our approach both in run time and in the handling of small clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا