ﻻ يوجد ملخص باللغة العربية
With the rapid advance of information technology, network systems have become increasingly complex and hence the underlying system dynamics are often unknown or difficult to characterize. Finding a good network control policy is of significant importance to achieve desirable network performance (e.g., high throughput or low delay). In this work, we consider using model-based reinforcement learning (RL) to learn the optimal control policy for queueing networks so that the average job delay (or equivalently the average queue backlog) is minimized. Traditional approaches in RL, however, cannot handle the unbounded state spaces of the network control problem. To overcome this difficulty, we propose a new algorithm, called Reinforcement Learning for Queueing Networks (RL-QN), which applies model-based RL methods over a finite subset of the state space, while applying a known stabilizing policy for the rest of the states. We establish that the average queue backlog under RL-QN with an appropriately constructed subset can be arbitrarily close to the optimal result. We evaluate RL-QN in dynamic server allocation, routing and switching problems. Simulation results show that RL-QN minimizes the average queue backlog effectively.
We consider a multicast scheme recently proposed for a wireless downlink in [1]. It was shown earlier that power control can significantly improve its performance. However for this system, obtaining optimal power control is intractable because of a v
Cloud computing today is dominated by multi-server jobs. These are jobs that request multiple servers simultaneously and hold onto all of these servers for the duration of the job. Multi-server jobs add a lot of complexity to the traditional one-job-
This work considers the problem of control and resource scheduling in networked systems. We present DIRA, a Deep reinforcement learning based Iterative Resource Allocation algorithm, which is scalable and control-aware. Our algorithm is tailored towa
Traditional Traffic Engineering (TE) solutions can achieve the optimal or near-optimal performance by rerouting as many flows as possible. However, they do not usually consider the negative impact, such as packet out of order, when frequently rerouti
Manipulate and control of the complex quantum system with high precision are essential for achieving universal fault tolerant quantum computing. For a physical system with restricted control resources, it is a challenge to control the dynamics of the