ترغب بنشر مسار تعليمي؟ اضغط هنا

Solving Physics Puzzles by Reasoning about Paths

93   0   0.0 ( 0 )
 نشر من قبل Andrew Melnik
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new deep learning model for goal-driven tasks that require intuitive physical reasoning and intervention in the scene to achieve a desired end goal. Its modular structure is motivated by hypothesizing a sequence of intuitive steps that humans apply when trying to solve such a task. The model first predicts the path the target object would follow without intervention and the path the target object should follow in order to solve the task. Next, it predicts the desired path of the action object and generates the placement of the action object. All components of the model are trained jointly in a supervised way; each component receives its own learning signal but learning signals are also backpropagated through the entire architecture. To evaluate the model we use PHYRE - a benchmark test for goal-driven physical reasoning in 2D mechanics puzzles.



قيم البحث

اقرأ أيضاً

In this thesis, we introduce a novel formal framework to represent and reason about qualitative direction and distance relations between extended objects using Answer Set Programming (ASP). We take Cardinal Directional Calculus (CDC) as a starting po int and extend CDC with new sorts of constraints which involve defaults, preferences and negation. We call this extended version as nCDC. Then we further extend nCDC by augmenting qualitative distance relation and name this extension as nCDC+. For CDC, nCDC, nCDC+, we introduce an ASP-based general framework to solve consistency checking problems, address composition and inversion of qualitative spatial relations, infer unknown or missing relations between objects, and find a suitable configuration of objects which fulfills a given inquiry.
Comprehending procedural text, e.g., a paragraph describing photosynthesis, requires modeling actions and the state changes they produce, so that questions about entities at different timepoints can be answered. Although several recent systems have s hown impressive progress in this task, their predictions can be globally inconsistent or highly improbable. In this paper, we show how the predicted effects of actions in the context of a paragraph can be improved in two ways: (1) by incorporating global, commonsense constraints (e.g., a non-existent entity cannot be destroyed), and (2) by biasing reading with preferences from large-scale corpora (e.g., trees rarely move). Unlike earlier methods, we treat the problem as a neural structured prediction task, allowing hard and soft constraints to steer the model away from unlikely predictions. We show that the new model significantly outperforms earlier systems on a benchmark dataset for procedural text comprehension (+8% relative gain), and that it also avoids some of the nonsensical predictions that earlier systems make.
As a contribution to the challenge of building game-playing AI systems, we develop and analyse a formal language for representing and reasoning about strategies. Our logical language builds on the existing general Game Description Language (GDL) and extends it by a standard modality for linear time along with two dual connectives to express preferences when combining strategies. The semantics of the language is provided by a standard state-transition model. As such, problems that require reasoning about games can be solved by the standard methods for reasoning about actions and change. We also endow the language with a specific semantics by which strategy formulas are understood as move recommendations for a player. To illustrate how our formalism supports automated reasoning about strategies, we demonstrate two example methods of implementation/: first, we formalise the semantic interpretation of our language in conjunction with game rules and strategy rules in the Situation Calculus; second, we show how the reasoning problem can be solved with Answer Set Programming.
Learning-based methods are growing prominence for planning purposes. However, there are very few approaches for learning-assisted constrained path-planning on graphs, while there are multiple downstream practical applications. This is the case for co nstrained path-planning for Autonomous Unmanned Ground Vehicles (AUGV), typically deployed in disaster relief or search and rescue applications. In off-road environments, the AUGV must dynamically optimize a source-destination path under various operational constraints, out of which several are difficult to predict in advance and need to be addressed on-line. We propose a hybrid solving planner that combines machine learning models and an optimal solver. More specifically, a graph convolutional network (GCN) is used to assist a branch and bound (B&B) algorithm in handling the constraints. We conduct experiments on realistic scenarios and show that GCN support enables substantial speedup and smoother scaling to harder problems.
67 - S. Blinnikov (1 , 2 , 3 2016
The black hole binary properties inferred from the LIGO gravitational wave signal GW150914 posed several serious problems. The high masses and low effective spin of black hole binary can be explained if they are primordial (PBH) rather than the produ cts of the stellar binary evolution. Such PBH properties are postulated ad hoc but not derived from fundamental theory. We show that the necessary features of PBHs naturally follow from the slightly modified Affleck-Dine (AD) mechanism of baryogenesis. The log-normal distribution of PBHs, predicted within the AD paradigm, is adjusted to provide an abundant population of low-spin stellar mass black holes. The same distribution gives a sufficient number of quickly growing seeds of supermassive black holes observed at high redshifts and may comprise an appreciable fraction of Dark Matter which does not contradict any existing observational limits. Testable predictions of this scenario are discussed.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا