ترغب بنشر مسار تعليمي؟ اضغط هنا

PLAS: Latent Action Space for Offline Reinforcement Learning

191   0   0.0 ( 0 )
 نشر من قبل Wenxuan Zhou
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of offline reinforcement learning is to learn a policy from a fixed dataset, without further interactions with the environment. This setting will be an increasingly more important paradigm for real-world applications of reinforcement learning such as robotics, in which data collection is slow and potentially dangerous. Existing off-policy algorithms have limited performance on static datasets due to extrapolation errors from out-of-distribution actions. This leads to the challenge of constraining the policy to select actions within the support of the dataset during training. We propose to simply learn the Policy in the Latent Action Space (PLAS) such that this requirement is naturally satisfied. We evaluate our method on continuous control benchmarks in simulation and a deformable object manipulation task with a physical robot. We demonstrate that our method provides competitive performance consistently across various continuous control tasks and different types of datasets, outperforming existing offline reinforcement learning methods with explicit constraints. Videos and code are available at https://sites.google.com/view/latent-policy.



قيم البحث

اقرأ أيضاً

The process of learning a manipulation task depends strongly on the action space used for exploration: posed in the incorrect action space, solving a task with reinforcement learning can be drastically inefficient. Additionally, similar tasks or inst ances of the same task family impose latent manifold constraints on the most effective action space: the task family can be best solved with actions in a manifold of the entire action space of the robot. Combining these insights we present LASER, a method to learn latent action spaces for efficient reinforcement learning. LASER factorizes the learning problem into two sub-problems, namely action space learning and policy learning in the new action space. It leverages data from similar manipulation task instances, either from an offline expert or online during policy learning, and learns from these trajectories a mapping from the original to a latent action space. LASER is trained as a variational encoder-decoder model to map raw actions into a disentangled latent action space while maintaining action reconstruction and latent space dynamic consistency. We evaluate LASER on two contact-rich robotic tasks in simulation, and analyze the benefit of policy learning in the generated latent action space. We show improved sample efficiency compared to the original action space from better alignment of the action space to the task space, as we observe with visualizations of the learned action space manifold. Additional details: https://www.pair.toronto.edu/laser
Offline reinforcement learning (RL) refers to the problem of learning policies from a static dataset of environment interactions. Offline RL enables extensive use and re-use of historical datasets, while also alleviating safety concerns associated wi th online exploration, thereby expanding the real-world applicability of RL. Most prior work in offline RL has focused on tasks with compact state representations. However, the ability to learn directly from rich observation spaces like images is critical for real-world applications such as robotics. In this work, we build on recent advances in model-based algorithms for offline RL, and extend them to high-dimensional visual observation spaces. Model-based offline RL algorithms have achieved state of the art results in state based tasks and have strong theoretical guarantees. However, they rely crucially on the ability to quantify uncertainty in the model predictions, which is particularly challenging with image observations. To overcome this challenge, we propose to learn a latent-state dynamics model, and represent the uncertainty in the latent space. Our approach is both tractable in practice and corresponds to maximizing a lower bound of the ELBO in the unknown POMDP. In experiments on a range of challenging image-based locomotion and manipulation tasks, we find that our algorithm significantly outperforms previous offline model-free RL methods as well as state-of-the-art online visual model-based RL methods. Moreover, we also find that our approach excels on an image-based drawer closing task on a real robot using a pre-existing dataset. All results including videos can be found online at https://sites.google.com/view/lompo/ .
Reinforcement Learning (RL) of contact-rich manipulation tasks has yielded impressive results in recent years. While many studies in RL focus on varying the observation space or reward model, few efforts focused on the choice of action space (e.g. jo int or end-effector space, position, velocity, etc.). However, studies in robot motion control indicate that choosing an action space that conforms to the characteristics of the task can simplify exploration and improve robustness to disturbances. This paper studies the effect of different action spaces in deep RL and advocates for Variable Impedance Control in End-effector Space (VICES) as an advantageous action space for constrained and contact-rich tasks. We evaluate multiple action spaces on three prototypical manipulation tasks: Path Following (task with no contact), Door Opening (task with kinematic constraints), and Surface Wiping (task with continuous contact). We show that VICES improves sample efficiency, maintains low energy consumption, and ensures safety across all three experimental setups. Further, RL policies learned with VICES can transfer across different robot models in simulation, and from simulation to real for the same robot. Further information is available at https://stanfordvl.github.io/vices.
Offline reinforcement learning approaches can generally be divided to proximal and uncertainty-aware methods. In this work, we demonstrate the benefit of combining the two in a latent variational model. We impose a latent representation of states and actions and leverage its intrinsic Riemannian geometry to measure distance of latent samples to the data. Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data. We integrate our metrics in a model-based offline optimization framework, in which proximity and uncertainty can be carefully controlled. We illustrate the geodesics on a simple grid-like environment, depicting its natural inherent topology. Finally, we analyze our approach and improve upon contemporary offline RL benchmarks.
69 - Nan Lin , Yuxuan Li , Yujun Zhu 2020
Traditionally, reinforcement learning methods predict the next action based on the current state. However, in many situations, directly applying actions to control systems or robots is dangerous and may lead to unexpected behaviors because action is rather low-level. In this paper, we propose a novel hierarchical reinforcement learning framework without explicit action. Our meta policy tries to manipulate the next optimal state and actual action is produced by the inverse dynamics model. To stabilize the training process, we integrate adversarial learning and information bottleneck into our framework. Under our framework, widely available state-only demonstrations can be exploited effectively for imitation learning. Also, prior knowledge and constraints can be applied to meta policy. We test our algorithm in simulation tasks and its combination with imitation learning. The experimental results show the reliability and robustness of our algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا