ترغب بنشر مسار تعليمي؟ اضغط هنا

Lagrangian particle model for 3D simulation of pellets and SPI fragments in tokamaks

65   0   0.0 ( 0 )
 نشر من قبل Roman Samulyak
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A 3D numerical model for the ablation of pellets and shattered pellet injection (SPI) fragments in tokamaks in the plasma disruption mitigation and fueling parameter space has been developed based on the Lagrangian particle code [R. Samulyak, X. Wang, H.-S. Chen, Lagrangian Particle Method for Compressible Fluid Dynamics, J. Comput. Phys., 362 (2018), 1-19]. The pellet code implements the low magnetic Reynolds number MHD equations, kinetic models for the electronic heating, a pellet surface ablation model, an equation of state that supports multiple ionization states, radiation, and a model for grad-B drift of the ablated material across the magnetic field. The Lagrangian particle algorithm is highly adaptive, capable of simulating a large number of fragments in 3D while eliminating numerical difficulties of dealing with the tokamak background plasma. The code has achieved good agreement with theory for spherically symmetric ablation flows. Axisymmetric simulations of neon and deuterium pellets in magnetic fields ranging from 1 to 6 Tesla have been compared with previous simulations using the FronTier code, and very good agreement has also been obtained. The main physics contribution of the paper is a detailed study of the influence of 3D effects, in particular grad-B drift, on pellet ablation rates and properties of ablation clouds. Smaller reductions of ablation rates in magnetic fields compared to axially symmetric simulations have been demonstrated because the ablated material is not confined to narrowing channels in the presence of grad-B drift. Contribution of various factors in the grad-B drift model has also been quantified.



قيم البحث

اقرأ أيضاً

Field-line localized ballooning modes have been observed at the edge of high confinement mode plasmas in ASDEX Upgrade with rotating 3D perturbations induced by an externally applied n = 2 error field and during a moderate level of edge localized mod e-mitigation. The observed ballooning modes are localized to the field-lines which experience one of the two zero-crossings of the radial flux surface displacement during one rotation period. The localization of the ballooning modes agrees very well with the localization of the largest growth rates from infinite-n ideal ballooning stability calculations using a realistic 3D ideal magnetohydrodynamic equilibrium. This analysis predicts a lower stability with respect to the axisymmetric case. The primary mechanism for the local lower stability is the 3D distortion of the local magnetic shear.
Gyrokinetic simulations of ion temperature gradient mode and trapped electron mode driven impurity transport in a realistic tokamak geometry are presented and compared with results using simplified geometries. The gyrokinetic results, obtained with t he GENE code in both linear and non-linear modes are compared with data and analysis for a dedicated impurity injection discharge at JET. The impact of several factors on heat and particle transport is discussed, lending special focus to tokamak geometry and rotational shear. To this end, results using s-alpha and concentric circular equilibria are compared with results with magnetic geometry from a JET experiment. To further approach experimental conditions, non-linear gyrokinetic simulations are performed with collisions and a carbon background included. The impurity peaking factors, computed by finding local density gradients corresponding to zero particle flux, are discussed. The impurity peaking factors are seen to be reduced by a factor of ~2 in realistic geometry compared with the simplified geometries, due to a reduction of the convective pinch. It is also seen that collisions reduce the peaking factor for low-Z impurities, while increasing it for high charge numbers, which is attributed to a shift in the transport spectra towards higher wavenumbers with the addition of collisions. With the addition of roto-diffusion, an overall reduction of the peaking factors is observed, but this decrease is not sufficient to explain the flat carbon profiles seen at JET.
Recently-proposed tokamak concepts use magnetic fields up to 12 T, far higher than in conventional devices, to reduce size and cost. Theoretical and computational study of trends in plasma behavior with increasing field strength is critical to such p roposed devices. This paper considers trends in Alfven eigenmode (AE) stability. Energetic particles, including alphas from D-T fusion, can destabilize AEs, possibly causing loss of alpha heat and damage to the device. AEs are sensitive to device magnetic field via the field dependence of resonances, alpha particle beta, and alpha orbit width. We describe the origin and effect of these dependences analytically and by using recently-developed numerical techniques (Rodrigues et al. 2015 Nucl. Fusion 55 083003). The work suggests high-field machines where fusion-born alphas are sub-Alfvenic or nearly sub-Alfvenic may partially cut off AE resonances, reducing growth rates of AEs and the energy of alphas interacting with them. High-field burning plasma regimes have non-negligible alpha particle beta and AE drive, but faster slowing down time, provided by high electron density, and higher field strength reduces this drive relative to low-field machines with similar power densities. The toroidal mode number of the most unstable modes will tend to be higher in high magnetic field devices. The work suggests that high magnetic field devices have unique, and potentially advantageous, AE instability properties at both low and high densities.
Barriers have been identified in magnetically confined plasmas reducing the particle transport and improving the confinement. One of them, the primary shearless barriers are associated to extrema of non-monotonic plasma profiles. Previously, we ident ified these barriers in a model described by a map that allows the integration of charged particles motion in drift waves for a long time scale. In this work, we show how the existence of these robust barriers depends on the fluctuation amplitude and on the electric shear. Moreover, we also find control parameter intervals for which these primary barriers onset and break-up are recurrent. Another noticeable feature, in these transitions, is the appearance of a layer of particle trajectory stickiness after the shearless barrier break-up or before its onset. Besides the mentioned primary barriers, we also observe sequences of secondary shearless barriers, not reported before, created and destroyed by a sequence of bifurcations as the main control parameters, the fluctuation amplitude and electric shear, are varied. Furthermore, in these bifurcations, we also find hitherto unknown double and triple secondary shearless barriers which constitute a noticeable obstacle to the chaotic transport.
We demonstrate that, for the case of quasi-equipartition between the velocity and the magnetic field, the Lagrangian-averaged magnetohydrodynamics alpha-model (LAMHD) reproduces well both the large-scale and small-scale properties of turbulent flows; in particular, it displays no increased (super-filter) bottleneck effect with its ensuing enhanced energy spectrum at the onset of the sub-filter-scales. This is in contrast to the case of the neutral fluid in which the Lagrangian-averaged Navier-Stokes alpha-model is somewhat limited in its applications because of the formation of spatial regions with no internal degrees of freedom and subsequent contamination of super-filter-scale spectral properties. No such regions are found in LAMHD, making this method capable of large reductions in required numerical degrees of freedom; specifically, we find a reduction factor of 200 when compared to a direct numerical simulation on a large grid of 1536^3 points at the same Reynolds number.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا