ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain induced stabilization of a static Jahn-Teller distortion in the O$^*$-phase of La$_{7/8}$Sr$_{1/8}$MnO$_3$

235   0   0.0 ( 0 )
 نشر من قبل Vladimir Hinkov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At room temperature, bulk La$_{7/8}$Sr$_{1/8}$MnO$_3$ is in the dynamic Jahn--Teller O$^*$ phase, but undergoes a transition to a static, magnetically ordered Jahn--Teller phase at lower temperatures. Here we study a $6$ unit cells thin film of this compound grown on SrTiO$_3$, resulting in small compressive strain due to a lattice mismatch of $lesssim 0.2%$. We combine X-ray absorption spectroscopy with multiplet ligand field theory to study the local electronic and magnetic properties of Mn in the film. We determine the Mn $d_{3z^2-r^2}$ orbital to be $0.13;text{eV}$ lower in energy than the $d_{x^2-y^2}$, which is a disproportionately large splitting given the small degree of compressive strain. We interpret this as resulting from the strain providing a preferential orientation for the MnO$_6$ octahedra, which are strongly susceptible to such a deformation in the vicinity of the phase transition. Hence, they collectively elongate along the $c$ axis into a static Jahn--Teller arrangement. Furthermore, we demonstrate the strongly covalent character of La$_{7/8}$Sr$_{1/8}$MnO$_3$, with a contribution of nearly $50%$ of the one-ligand-hole configuration $d^{5} underline{L}^1$ to the ground state wavefunction. Finally, we find the system to be in a high-spin configuration, with the projection of the local magnetic moment on the quantization axis being about $3.7;mu_{text{B}}/text{Mn}$. We show, however, that the system is close to a high-spin--low-spin transition, which might be triggered by crystal field effects.


قيم البحث

اقرأ أيضاً

282 - S. Dong , S. Dai , X.Y. Yao 2005
The charge order of CE phase in half-doped manganites is studied, based on an argument that the charge-ordering is caused by the Jahn-Teller distortions of MnO6 octahedra rather than Coulomb repulsion between electrons. The uantitative calculation on the ferromagnetic zigzag chain as the basic structure unit of CE phase within the framework of two-orbital double exchange model including Jahn-Teller effect is performed, and it is shown that the charge-disproportionation of Mn cations in the charge-ordered CE phase is less than 13%. In addition, we predict the negative charge-disproportionation once the Jahn-Teller effect is weak enough.
We demonstrate that magnetic phase separation and competing spin order in the colossal magnetoresistive (CMR) manganites can be directly explored via tuning strain in bulk samples of nanocrystalline La$_{1-x}$Ca$_x$MnO$_3$. Our results show that stra in can be reversibly frozen into the lattice in order to stabilize coexisting antiferromagnetic domains within the nominally ferromagnetic metallic state of La$_{5/8}$Ca$_{3/8}$MnO$_3$. The measurement of tunable phase separation via magnetic neutron powder diffraction presents a direct route of exploring the correlated spin properties of phase separated charge/magnetic order in highly strained CMR materials and opens a potential avenue for realizing intergrain spin tunnel junction networks with enhanced CMR behavior in a chemically homogeneous material.
We studied the charge-orbital ordering in the superlattice of charge-ordered insulating Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ and ferromagnetic metallic La$_{0.5}$Sr$_{0.5}$MnO$_3$ by resonant soft x-ray diffraction. A temperature-dependent incommensurability is found in the orbital order. In addition, a large hysteresis is observed that is caused by phase competition between insulating charge ordered and metallic ferromagnetic states. No magnetic phase transitions are observed in contrast to bulk, confirming the unique character of the superlattice. The deviation from the commensurate orbital order can be directly related to the decrease of ordered-layer thickness that leads to a decoupling of the orbital-ordered planes along the c axis.
With x-ray absorption spectroscopy we investigated the orbital reconstruction and the induced ferromagnetic moment of the interfacial Cu atoms in YBa$_2$Cu$_3$O$_{7}$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (YBCO/LCMO) and La$_{2-x}$Sr$_{x}$CuO$_4$/La$_{2/3}$Ca$ _{1/3}$MnO$_3$ (LSCO/LCMO) multilayers. We demonstrate that these electronic and magnetic proximity effects are coupled and are common to these cuprate/manganite multilayers. Moreover, we show that they are closely linked to a specific interface termination with a direct Cu-O-Mn bond. We furthermore show that the intrinsic hole doping of the cuprate layers and the local strain due to the lattice mismatch between the cuprate and manganite layers are not of primary importance. These findings underline the central role of the covalent bonding at the cuprate/manganite interface in defining the spin-electronic properties.
144 - G. Garbarino , C. Acha , P. Levy 2006
We report on DC and pulsed electric field sensitivity of the resistance of mixed valent Mn oxide based La(5/8-y)Pr(y)Ca(3/8)MnO(3) (y = 0.4) single crystals as a function of temperature. The low temperature regime of the resistivity is highly current and voltage dependent. An irreversible transition from high (HR) to a low resistivity (LR) is obtained upon the increase of the electric field up to a temperature dependent critical value (V_c). The current-voltage characteristics in the LR regime as well as the lack of a variation in the magnetization response when V_c is reached indicate the formation of a non-single connected filamentary conducting path. The temperature dependence of V_c indicates the existence of a consolute point where the conducting and insulating phases produce a critical behavior as a consequence of their separation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا