ﻻ يوجد ملخص باللغة العربية
We analyze the Abraham-Minkowski problem known from classical electrodynamics from two different perspectives. First, we follow a formal approach, implying use of manifolds with curved space sections in accordance with Fermats principle, emphasizing that the resulting covariant and contravariant components of the photon four-momentum is a property linked to the {it Minkowski} theory only. There is thus no link to the Abraham theory in that context. Next we turn to the experimental side, giving a brief account of older and newer radiation pressure experiments that clearly show how the Minkowski photon momentum is preferable under optical conditions. Under low-frequency conditions, where experimental detection of the individual oscillations predicted by the Abraham term are possible, the picture is however quite different.
In this paper we present our point of view on correct physical interpretation of the Bel-Robinson tensor within the framework of the standard General Relativity ({bf GR}), i.e., within the framework of the {bf GR} without supplementary elements like
The linearised general conformal field equations in their first and second order form are used to study the behaviour of the spin-2 zero-rest-mass equation on Minkowski background in the vicinity of space-like infinity.
In this article, we clarify the link between the conformal (i.e. Weyl) correspondence from the Minkowski space to the de Sitter space and the conformal (i.e. SO(2,$d$)) invariance of the conformal scalar field on both spaces. We exhibit the realizati
A discussion is presented of the principle of black hole com- plementarity. It is argued that this principle could be viewed as a breakdown of general relativity, or alternatively, as the introduction of a time variable with multiple `sheets or `bran
Applications of the covariant theory of drive-forms are considered for a class of perfectly insulating media. The distinction between the notions of classical photons in homogeneous bounded and unbounded stationary media and in stationary unbounded m