ﻻ يوجد ملخص باللغة العربية
In this article, we propose a programmable plasmonic waveguide system (PPWS) to achieve several different functions based on metal coding metamaterials (MCMs) and inverse design technology. There is no need to spend much time on considering the relation between the function and the structure because the MCMs in the PPWS are reprogrammable. In order to demonstrate the effectiveness of the PPWS, we utilize it to achieve several filtering functions, including bandstop and bandpass filters. The simulation results exhibit that the performance of filters is improved based on genetic algorithm, particle swarm optimization, multi-traversal direct-binary search and simulated annealing. Especially, the bandwidth and quality factor for the narrow-band filter can reach 6.5 nm and 200.5. In addition to the simple filtering functions, some relatively complex transmission characteristics can be obtained by using the PPWS, such as plasmon-induced transparency-like effects. In conclusion, genetic algorithm is considered as the most efficient inverse design method for our system due to its less optimization time and stable performance. In comparison with the previous works, our proposed PPWS not only provides a general framework for obtaining an effective, flexible and compact plasmonic device but also shows the applications of inverse design on photonics devices.
Nanoantennas for light enhance light-matter interaction at the nanoscale making them useful in optical communication, sensing, and spectroscopy. So far nanoantenna engineering has been largely based on rules derived from the radio frequency domain wh
Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrase
We show that a metallic plate with fractal-shaped slits can be homogenitized as a plasmonic metamaterial with plasmon frequency dictated by the fractal geometry. Owing to the all-dimensional subwavelength nature of the fractal pattern, our system sup
Motivated by the recent growing demand in dynamically-controlled flat optics, we take advantage of a hybrid phase-change plasmonic metasurface (MS) to effectively tailor the amplitude, phase, and polarization responses of the incident beam within a u
Topological corner state (TCS) and topological edge state (TES) have provided new approaches to control the propagation of light. The construction of topological coupled cavity-waveguide system (TCCWS) based on TCS and TES is worth looking forward to