ترغب بنشر مسار تعليمي؟ اضغط هنا

The Efficacy of Event Isotropy as an Event Shape Observable

44   0   0.0 ( 0 )
 نشر من قبل Cari Cesarotti
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Event isotropy $mathcal{I}^text{sph}$, an event shape observable that measures the distance of a final state from a spherically symmetric state, is designed for new physics signals that are far from QCD-like. Using a new technique for producing a wide variety of signals that can range from near-spherical to jetty, we compare event isotropy to other observables. We show that thrust $T$ and the $C$ parameter (and $lambda_text{max}$, the largest eigenvalue of the sphericity matrix) are strongly correlated and thus redundant, to a good approximation. By contrast, event isotropy adds considerable information, often serving to break degeneracies between signals that would have almost identical $T$ and $C$ distributions. Signals with broad distributions in $T$ (or $lambda_text{max}$) and in $mathcal{I}^text{sph}$ separately often have much narrower distributions, and are more easily distinguished, in the $({mathcal{I}^text{sph}},lambda_text{max})$ plane. An intuitive, semi-analytic estimation technique clarifies why this is the case and assists with the interpretation of the distributions.

قيم البحث

اقرأ أيضاً

We study the matching of the next-to-leading logarithmic approximation (NLLA) onto the fixed next-to-next-to-leading order (NNLO) calculation for event shape distributions in electron-positron annihilation. The resulting theoretical predictions combi ne all precision QCD knowledge on the distributions, and are theoretically reliable over an extended kinematical range. Compared to previously available matched NLLA+NLO and fixed order NNLO results, we observe that the effects of the combined NLLA+NNLO are small in the three-jet region, relevant for precision physics.
103 - T. A. Trainor 2000
Event-by-event analysis of heavy-ion collision events is an important tool for the study of the QCD phase boundary and formation of a quark-gluon plasma. A universal feature of phase boundaries is the appearance of increased fluctuations of conserved measures as manifested by excess measure variance compared to a reference. In this paper I consider a particular aspect of EbyE analysis emphasizing global-variables variance comparisons and the central limit theorem. I find that the central limit theorem is, in a broader interpretation, a statement about the scale invariance of total variance for a measure distribution, which in turn relates to the scale-dependent symmetry properties of the distribution.. I further generalize this concept to the relationship between the scale dependence of a covariance matrix for all conserved measures defined on a dynamical system and a matrix of covariance integrals defined on two-point measure spaces, which points the way to a detailed description of the symmetry dynamics of a complex measure system. Finally, I relate this generalized description to several recently proposed or completed event-by-event analyses.
64 - S. Haussler 2007
Within a dynamical quark recombination model we explore various proposed event-by-event observables sensitive to the microscopic structure of the QCD-matter created at RHIC energies. Charge fluctuations, charge transfer fluctuations and baryon-strang eness correlations are computed from a sample of central Au+Au events at the highest RHIC energy available ($sqrt{s_{NN}}$=200 GeV). We find that for all explored observables, the calculations yield the values predicted for a quark-gluon plasma only at early times of the evolution, whereas the final state approaches the values expected for a hadronic gas. We argue that the recombination-like hadronization process itself is responsible for the disappearance of the predicted deconfinement signatures. This might explain why no fluctuation signatures for the transition between quark and hadronic matter was ever observed in the experimental data up to now. However, it might also be interpreted as a clear indication for a recombination like hadronization process at RHIC.
In high-energy physics, Monte Carlo event generators (MCEGs) are used to simulate the interactions of high energy particles. MCEG event records store the information on the simulated particles and their relationships, and thus reflects the simulated evolution of physics phenomena in each collision event. We present the HepMC3 library, a next-generation framework for MCEG event record encoding and manipulation, which builds on the functionality of its widely-used predecessors to enable more sophisticated algorithms for event-record analysis. By comparison to previo
57 - T. Gehrmann , A. Huss , J. Mo 2019
We compute the next-to-next-to-leading order (NNLO) QCD corrections to event shape distributions and their mean values in deep inelastic lepton-nucleon scattering. The magnitude and shape of the corrections varies considerably between different varia bles. The corrections reduce the renormalization and factorization scale uncertainty of the predictions. Using a dispersive model to describe non-perturbative power corrections, we compare the NNLO QCD predictions with data from the H1 and ZEUS experiments. The newly derived corrections improve the theory description of the distributions and of their mean values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا