ﻻ يوجد ملخص باللغة العربية
The results of measurements performed using UCN storing method are in good agreement. The latest most accurate measurements of the neutron decay asymmetry and neutron lifetime measurements by storage method are in agreement within the Standard Model. However, there is a significant discrepancy at $3.6sigma$ (1% of decay probability) level with beam method experiment. This article discusses the possible causes of discrepancy in the measurements of the neutron lifetime with beam method experiment. The most probable cause, apparently, is the loss of protons in beam method experiment during storage in a magnetic trap due to charge exchange collisions of protons with the residual gas. The proton becomes neutral and leaves the trap, which leads to a decrease in the number of registered protons, i.e. to a decrease in the probability of neutron decay or to an increase in the measured neutron lifetime.
The review of experimental measurements of neutron lifetime is presented. Latest measurements with gravitational trap (PNPI NRC KI) and magnetic trap (LANL, USA) confirmed the result obtained by PNPI group in 2005. The results of measurements perform
We comment on a recent manuscript by A. P. Serebrov, et al. regarding residual gas charge exchange in the beam neutron lifetime experiment
The puzzle remains in the large discrepancy between neutron lifetime measured by the two distinct experimental approaches -- counts of beta decays in a neutron beam and storage of ultracold neutrons in a potential trap, namely, the beam method versus
We present the status of current US experimental efforts to measure the lifetime of the free neutron by the beam and bottle methods. BBN nucleosynthesis models require accurate measurements with 1 second uncertainties, which are currently feasible. F
The neutron lifetime is one of the basic parameters in the weak interaction, and is used for predicting the light element abundance in the early universe. Our group developed a new setup to measure the lifetime with the goal precision of 0.1% at the