ﻻ يوجد ملخص باللغة العربية
Hot-spot-based policing programs aim to deter crime through increased proactive patrols at high-crime locations. While most hot spot programs target easily identified chronic hot spots, we introduce models for predicting temporary hot spots to address effectiveness and equity objectives for crime prevention, and present findings from a crossover experiment evaluating application of hot spot predictions to prevent serious violent crime in Pittsburgh, PA. Over a 12-month experimental period, the Pittsburgh Bureau of Police assigned uniformed patrol officers to weekly predicted chronic and temporary hot spots of serious violent crimes comprising 0.5 percent of the citys area. We find statistically and practically significant reductions in serious violent crime counts within treatment hot spots as compared to control hot spots, with an overall reduction of 25.3 percent in the FBI-classified Part 1 Violent (P1V) crimes of homicide, rape, robbery, and aggravated assault, and a 39.7 percent reduction of African-American and other non-white victims of P1V crimes. We find that temporary hot spots increase spatial dispersion of patrols and have a greater percentage reduction in P1V crimes than chronic hot spots but fewer total number of crimes prevented. Only foot patrols, not car patrols, had statistically significant crime reductions in hot spots. We find no evidence of crime displacement; instead, we find weakly statistically significant spillover of crime prevention benefits to adjacent areas. In addition, we find no evidence that the community-oriented hot spot patrols produced over-policing arrests of minority or other populations.
We propose an efficient statistical method (denoted as SSR-Tensor) to robustly and quickly detect hot-spots that are sparse and temporal-consistent in a spatial-temporal dataset through the tensor decomposition. Our main idea is first to build an SSR
Police departments around the world have been experimenting with forms of place-based data-driven proactive policing for over two decades. Modern incarnations of such systems are commonly known as hot spot predictive policing. These systems predict w
Crime prediction plays an impactful role in enhancing public security and sustainable development of urban. With recent advances in data collection and integration technologies, a large amount of urban data with rich crime-related information and fin
Most existing point-based colocation methods are global measures (e.g., join count statistic, cross K function, and global colocation quotient). Most recently, a local indicator such as the local colocation quotient is proposed to capture the variabi
Developing spatio-temporal crime prediction models, and to a lesser extent, developing measures of accuracy and operational efficiency for them, has been an active area of research for almost two decades. Despite calls for rigorous and independent ev