ترغب بنشر مسار تعليمي؟ اضغط هنا

Enumeration of Various Animals on the Triangular Lattice

79   0   0.0 ( 0 )
 نشر من قبل Reza Rastegar
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider various classes of polyiamonds that are animals residing on the triangular lattice. By careful analyses through certain layer-by-layer decompositions and cell pruning/growing arguments, we derive explicit forms for the generating functions of the number of nonempty translation-invariant baryiamonds (bargraphs in the triangular lattice), column-convex polyiamonds, and convex polyiamonds with respect to their perimeter. In particular, we show that the number of (A) baryiamonds of perimeter $n$ is asymptotically $$frac{(xi+1)^2sqrt{xi^4+xi^3-2xi+1}}{2sqrt{pi n^3}}xi^{-n-2},$$ where $xi$ is a root of a certain explicit polynomial of degree 5. (B) column-convex polyiamonds of perimeter $n$ is asymptotic to $$frac{(17997809sqrt{17}+3^3cdot13cdot175463)sqrt{95sqrt{17}-119}}{2^7cdot43^2cdot 89^2sqrt{6pi n^3}}left(frac{3+sqrt{17}}{2}right)^{n-1}.$$ (C) convex polyiamonds of perimeter $n$ is asymptotic to $$frac{1280}{441sqrt{3pi n^3}}3^n.$$



قيم البحث

اقرأ أيضاً

We present new short proofs of known spanning tree enumeration formulae for threshold and Ferrers graphs by showing that the Laplacian matrices of such graphs admit triangular rank-one perturbations. We then characterize the set of graphs whose Lapla cian matrices admit triangular rank-one perturbations as the class of special 2-threshold graphs, introduced by Hung, Kloks, and Villaamil. Our work introduces (1) a new characterization of special 2-threshold graphs that generalizes the characterization of threshold graphs in terms of isolated and dominating vertices, and (2) a spanning tree enumeration formula for special 2-threshold graphs that reduces to the aforementioned formulae for threshold and Ferrers graphs. We consider both unweighted and weighted spanning tree enumeration.
In this paper we are interested in the asymptotic enumeration of Cayley graphs. It has previously been shown that almost every Cayley digraph has the smallest possible automorphism group: that is, it is a digraphical regular representation (DRR). In this paper, we approach the corresponding question for undirected Cayley graphs. The situation is complicated by the fact that there are two infinite families of groups that do not admit any graphical regular representation (GRR). The strategy for digraphs involved analysing separately the cases where the regular group $R$ has a nontrivial proper normal subgroup $N$ with the property that the automorphism group of the digraph fixes each $N$-coset setwise, and the cases where it does not. In this paper, we deal with undirected graphs in the case where the regular group has such a nontrivial proper normal subgroup.
51 - Cyril Banderier 2016
This article deals with the enumeration of directed lattice walks on the integers with any finite set of steps, starting at a given altitude $j$ and ending at a given altitude $k$, with additional constraints such as, for example, to never attain alt itude $0$ in-between. We first discuss the case of walks on the integers with steps $-h, dots, -1, +1, dots, +h$. The case $h=1$ is equivalent to the classical Dyck paths, for which many ways of getting explicit formulas involving Catalan-like numbers are known. The case $h=2$ corresponds to basketball walks, which we treat in full detail. Then we move on to the more general case of walks with any finite set of steps, also allowing some weights/probabilities associated with each step. We show how a method of wide applicability, the so-called kernel method, leads to explicit formulas for the number of walks of length $n$, for any $h$, in terms of nested sums of binomials. We finally relate some special cases to other combinatorial problems, or to problems arising in queuing theory.
528 - Zuhe Zhang 2012
In this paper, firstly we show that the entropy constants of the number of independent sets on certain plane lattices are the same as the entropy constants of the corresponding cylindrical and toroidal lattices. Secondly, we consider three more compl ex lattices which can not be handled by a single transfer matrix as in the plane quadratic lattice case. By introducing the concept of transfer multiplicity, we obtain the lower and upper bounds of the entropy constants of crossed quadratic lattice, generalized aztec diamond lattice and 8-8-4 lattice.
Tanglegrams are a special class of graphs appearing in applications concerning cospeciation and coevolution in biology and computer science. They are formed by identifying the leaves of two rooted binary trees. We give an explicit formula to count th e number of distinct binary rooted tanglegrams with $n$ matched vertices, along with a simple asymptotic formula and an algorithm for choosing a tanglegram uniformly at random. The enumeration formula is then extended to count the number of tangled chains of binary trees of any length. This includes a new formula for the number of binary trees with $n$ leaves. We also give a conjecture for the expected number of cherries in a large randomly chosen binary tree and an extension of this conjecture to other types of trees.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا