ترغب بنشر مسار تعليمي؟ اضغط هنا

Testability of relations between permutations

92   0   0.0 ( 0 )
 نشر من قبل Oren Becker
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We initiate the study of property testing problems concerning relations between permutations. In such problems, the input is a tuple $(sigma_1,dotsc,sigma_d)$ of permutations on ${1,dotsc,n}$, and one wishes to determine whether this tuple satisfies a certain system of relations $E$, or is far from every tuple that satisfies $E$. If this computational problem can be solved by querying only a small number of entries of the given permutations, we say that $E$ is testable. For example, when $d=2$ and $E$ consists of the single relation $mathsf{XY=YX}$, this corresponds to testing whether $sigma_1sigma_2=sigma_2sigma_1$, where $sigma_1sigma_2$ and $sigma_2sigma_1$ denote composition of permutations. We define a collection of graphs, naturally associated with the system $E$, that encodes all the information relevant to the testability of $E$. We then prove two theorems that provide criteria for testability and non-testability in terms of expansion properties of these graphs. By virtue of a deep connection with group theory, both theorems are applicable to wide classes of systems of relations. In addition, we formulate the well-studied group-theoretic notion of stability in permutations as a special case of the testability notion above, interpret all previous works on stability as testability results, survey previous results on stability from a computational perspective, and describe many directions for future research on stability and testability.

قيم البحث

اقرأ أيضاً

Given an abelian group $G$, it is natural to ask whether there exists a permutation $pi$ of $G$ that destroys all nontrivial 3-term arithmetic progressions (APs), in the sense that $pi(b) - pi(a) eq pi(c) - pi(b)$ for every ordered triple $(a,b,c) i n G^3$ satisfying $b-a = c-b eq 0$. This question was resolved for infinite groups $G$ by Hegarty, who showed that there exists an AP-destroying permutation of $G$ if and only if $G/Omega_2(G)$ has the same cardinality as $G$, where $Omega_2(G)$ denotes the subgroup of all elements in $G$ whose order divides $2$. In the case when $G$ is finite, however, only partial results have been obtained thus far. Hegarty has conjectured that an AP-destroying permutation of $G$ exists if $G = mathbb{Z}/nmathbb{Z}$ for all $n eq 2,3,5,7$, and together with Martinsson, he has proven the conjecture for all $n > 1.4 times 10^{14}$. In this paper, we show that if $p$ is a prime and $k$ is a positive integer, then there is an AP-destroying permutation of the elementary $p$-group $(mathbb{Z}/pmathbb{Z})^k$ if and only if $p$ is odd and $(p,k) otin {(3,1),(5,1), (7,1)}$.
In the 1970s, Lovasz built a bridge between graphs and alternating matrix spaces, in the context of perfect matchings (FCT 1979). A similar connection between bipartite graphs and matrix spaces plays a key role in the recent resolutions of the non-co mmutative rank problem (Garg-Gurvits-Oliveira-Wigderson, FOCS 2016; Ivanyos-Qiao-Subrahmanyam, ITCS 2017). In this paper, we lay the foundation for another bridge between graphs and alternating matrix spaces, in the context of independent sets and vertex colorings. The corresponding structures in alternating matrix spaces are isotropic spaces and isotropic decompositions, both useful structures in group theory and manifold theory. We first show that the maximum independent set problem and the vertex c-coloring problem reduce to the maximum isotropic space problem and the isotropic c-decomposition problem, respectively. Next, we show that several topics and results about independent sets and vertex colorings have natural correspondences for isotropic spaces and decompositions. These include algorithmic problems, such as the maximum independent set problem for bipartite graphs, and exact exponential-time algorithms for the chromatic number, as well as mathematical questions, such as the number of maximal independent sets, and the relation between the maximum degree and the chromatic number. These connections lead to new interactions between graph theory and algebra. Some results have concrete applications to group theory and manifold theory, and we initiate a variant of these structures in the context of quantum information theory. Finally, we propose several open questions for further exploration. This paper is dedicated to the memory of Ker-I Ko.
In this work we show that high dimensional expansion implies locally testable code. Specifically, we define a notion that we call high-dimensional-expanding-system (HDE-system). This is a set system defined by incidence relations with certain high di mensional expansion relations between its sets. We say that a linear code is modelled over HDE-system, if the collection of linear constraints that the code satisfies could by described via the HDE-system. We show that a code that can be modelled over HDE-system is locally testable. This implies that high dimensional expansion phenomenon solely implies local testability of codes. Prior work had to rely to local notions of local testability to get some global forms of testability (e.g. co-systolic expansion from local one, global agreement from local one), while our work infers global testability directly from high dimensional expansion without relying on some local form of testability. The local testability result that we obtain from HDE-systems is, in fact, stronger than standard one, and we term it amplified local testability. We further show that most of the well studied locally testable codes as Reed-Muller codes and more generally affine invariant codes with single-orbit property fall into our framework. Namely, it is possible to show that they are modelled over an HDE-system, and hence the family of all p-ary affine invariant codes is amplified locally testable. This yields the strongest known testing results for affine invariant codes with single orbit, strengthening the work of Kaufman and Sudan.
We consider finite sums of counting functions on the free group $F_n$ and the free monoid $M_n$ for $n geq 2$. Two such sums are considered equivalent if they differ by a bounded function. We find the complete set of linear relations between equivale nce classes of sums of counting functions and apply this result to construct an explicit basis for the vector space of such equivalence classes. Moreover, we provide a graphical algorithm to determine whether two given sums of counting functions are equivalent. In particular, this yields an algorithm to decide whether two sums of Brooks quasimorphisms on $F_n$ represent the same class in bounded cohomology.
We study the multiparty communication complexity of high dimensional permutations, in the Number On the Forehead (NOF) model. This model is due to Chandra, Furst and Lipton (CFL) who also gave a nontrivial protocol for the Exactly-n problem where thr ee players receive integer inputs and need to decide if their inputs sum to a given integer $n$. There is a considerable body of literature dealing with the same problem, where $(mathbb{N},+)$ is replaced by some other abelian group. Our work can be viewed as a far-reaching extension of this line of work. We show that the known lower bounds for that group-theoretic problem apply to all high dimensional permutations. We introduce new proof techniques that appeal to recent advances in Additive Combinatorics and Ramsey theory. We reveal new and unexpected connections between the NOF communication complexity of high dimensional permutations and a variety of well known and thoroughly studied problems in combinatorics. Previous protocols for Exactly-n all rely on the construction of large sets of integers without a 3-term arithmetic progression. No direct algorithmic protocol was previously known for the problem, and we provide the first such algorithm. This suggests new ways to significantly improve the CFL protocol. Many new open questions are presented throughout.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا