ترغب بنشر مسار تعليمي؟ اضغط هنا

Alleviating Cold-Start Problems in Recommendation through Pseudo-Labelling over Knowledge Graph

139   0   0.0 ( 0 )
 نشر من قبل Riku Togashi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Solving cold-start problems is indispensable to provide meaningful recommendation results for new users and items. Under sparsely observed data, unobserved user-item pairs are also a vital source for distilling latent users information needs. Most present works leverage unobserved samples for extracting negative signals. However, such an optimisation strategy can lead to biased results toward already popular items by frequently handling new items as negative instances. In this study, we tackle the cold-start problems for new users/items by appropriately leveraging unobserved samples. We propose a knowledge graph (KG)-aware recommender based on graph neural networks, which augments labelled samples through pseudo-labelling. Our approach aggressively employs unobserved samples as positive instances and brings new items into the spotlight. To avoid exhaustive label assignments to all possible pairs of users and items, we exploit a KG for selecting probably positive items for each user. We also utilise an improved negative sampling strategy and thereby suppress the exacerbation of popularity biases. Through experiments, we demonstrate that our approach achieves improvements over the state-of-the-art KG-aware recommenders in a variety of scenarios; in particular, our methodology successfully improves recommendation performance for cold-start users/items.



قيم البحث

اقرأ أيضاً

173 - Shuai Wang , Kun Zhang , Le Wu 2021
The cold start problem in recommender systems is a long-standing challenge, which requires recommending to new users (items) based on attributes without any historical interaction records. In these recommendation systems, warm users (items) have priv ileged collaborative signals of interaction records compared to cold start users (items), and these Collaborative Filtering (CF) signals are shown to have competing performance for recommendation. Many researchers proposed to learn the correlation between collaborative signal embedding space and the attribute embedding space to improve the cold start recommendation, in which user and item categorical attributes are available in many online platforms. However, the cold start recommendation is still limited by two embedding spaces modeling and simple assumptions of space transformation. As user-item interaction behaviors and user (item) attributes naturally form a heterogeneous graph structure, in this paper, we propose a privileged graph distillation model~(PGD). The teacher model is composed of a heterogeneous graph structure for warm users and items with privileged CF links. The student model is composed of an entity-attribute graph without CF links. Specifically, the teacher model can learn better embeddings of each entity by injecting complex higher-order relationships from the constructed heterogeneous graph. The student model can learn the distilled output with privileged CF embeddings from the teacher embeddings. Our proposed model is generally applicable to different cold start scenarios with new user, new item, or new user-new item. Finally, extensive experimental results on the real-world datasets clearly show the effectiveness of our proposed model on different types of cold start problems, with average $6.6%, 5.6%, $ and $17.1%$ improvement over state-of-the-art baselines on three datasets, respectively.
115 - Tieyun Qian , Yile Liang , Qing Li 2019
Matrix completion is a classic problem underlying recommender systems. It is traditionally tackled with matrix factorization. Recently, deep learning based methods, especially graph neural networks, have made impressive progress on this problem. Desp ite their effectiveness, existing methods focus on modeling the user-item interaction graph. The inherent drawback of such methods is that their performance is bound to the density of the interactions, which is however usually of high sparsity. More importantly, for a cold start user/item that does not have any interactions, such methods are unable to learn the preference embedding of the user/item since there is no link to this user/item in the graph. In this work, we develop a novel framework Attribute Graph Neural Networks (AGNN) by exploiting the attribute graph rather than the commonly used interaction graph. This leads to the capability of learning embeddings for cold start users/items. Our AGNN can produce the preference embedding for a cold user/item by learning on the distribution of attributes with an extended variational auto-encoder structure. Moreover, we propose a new graph neural network variant, i.e., gated-GNN, to effectively aggregate various attributes of different modalities in a neighborhood. Empirical results on two real-world datasets demonstrate that our model yields significant improvements for cold start recommendations and outperforms or matches state-of-the-arts performance in the warm start scenario.
94 - Yinwei Wei , Xiang Wang , Qi Li 2021
Recommending cold-start items is a long-standing and fundamental challenge in recommender systems. Without any historical interaction on cold-start items, CF scheme fails to use collaborative signals to infer user preference on these items. To solve this problem, extensive studies have been conducted to incorporate side information into the CF scheme. Specifically, they employ modern neural network techniques (e.g., dropout, consistency constraint) to discover and exploit the coalition effect of content features and collaborative representations. However, we argue that these works less explore the mutual dependencies between content features and collaborative representations and lack sufficient theoretical supports, thus resulting in unsatisfactory performance. In this work, we reformulate the cold-start item representation learning from an information-theoretic standpoint. It aims to maximize the mutual dependencies between item content and collaborative signals. Specifically, the representation learning is theoretically lower-bounded by the integration of two terms: mutual information between collaborative embeddings of users and items, and mutual information between collaborative embeddings and feature representations of items. To model such a learning process, we devise a new objective function founded upon contrastive learning and develop a simple yet effective Contrastive Learning-based Cold-start Recommendation framework(CLCRec). In particular, CLCRec consists of three components: contrastive pair organization, contrastive embedding, and contrastive optimization modules. It allows us to preserve collaborative signals in the content representations for both warm and cold-start items. Through extensive experiments on four publicly accessible datasets, we observe that CLCRec achieves significant improvements over state-of-the-art approaches in both warm- and cold-start scenarios.
Recommendation efficiency and data sparsity problems have been regarded as two challenges of improving performance for online recommendation. Most of the previous related work focus on improving recommendation accuracy instead of efficiency. In this paper, we propose a Deep Pairwise Hashing (DPH) to map users and items to binary vectors in Hamming space, where a users preference for an item can be efficiently calculated by Hamming distance, which significantly improves the efficiency of online recommendation. To alleviate data sparsity and cold-start problems, the user-item interactive information and item content information are unified to learn effective representations of items and users. Specifically, we first pre-train robust item representation from item content data by a Denoising Auto-encoder instead of other deterministic deep learning frameworks; then we finetune the entire framework by adding a pairwise loss objective with discrete constraints; moreover, DPH aims to minimize a pairwise ranking loss that is consistent with the ultimate goal of recommendation. Finally, we adopt the alternating optimization method to optimize the proposed model with discrete constraints. Extensive experiments on three different datasets show that DPH can significantly advance the state-of-the-art frameworks regarding data sparsity and item cold-start recommendation.
The item cold-start problem seriously limits the recommendation performance of Collaborative Filtering (CF) methods when new items have either none or very little interactions. To solve this issue, many modern Internet applications propose to predict a new items interaction from the possessing contents. However, it is difficult to design and learn a map between the items interaction history and the corresponding contents. In this paper, we apply the Wasserstein distance to address the item cold-start problem. Given item content information, we can calculate the similarity between the interacted items and cold-start ones, so that a users preference on cold-start items can be inferred by minimizing the Wasserstein distance between the distributions over these two types of items. We further adopt the idea of CF and propose Wasserstein CF (WCF) to improve the recommendation performance on cold-start items. Experimental results demonstrate the superiority of WCF over state-of-the-art approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا