ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Pairwise Hashing for Cold-start Recommendation

129   0   0.0 ( 0 )
 نشر من قبل Yan Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recommendation efficiency and data sparsity problems have been regarded as two challenges of improving performance for online recommendation. Most of the previous related work focus on improving recommendation accuracy instead of efficiency. In this paper, we propose a Deep Pairwise Hashing (DPH) to map users and items to binary vectors in Hamming space, where a users preference for an item can be efficiently calculated by Hamming distance, which significantly improves the efficiency of online recommendation. To alleviate data sparsity and cold-start problems, the user-item interactive information and item content information are unified to learn effective representations of items and users. Specifically, we first pre-train robust item representation from item content data by a Denoising Auto-encoder instead of other deterministic deep learning frameworks; then we finetune the entire framework by adding a pairwise loss objective with discrete constraints; moreover, DPH aims to minimize a pairwise ranking loss that is consistent with the ultimate goal of recommendation. Finally, we adopt the alternating optimization method to optimize the proposed model with discrete constraints. Extensive experiments on three different datasets show that DPH can significantly advance the state-of-the-art frameworks regarding data sparsity and item cold-start recommendation.

قيم البحث

اقرأ أيضاً

Cold-start has being a critical issue in recommender systems with the explosion of data in e-commerce. Most existing studies proposed to alleviate the cold-start problem are also known as hybrid recommender systems that learn representations of users and items by combining user-item interactive and user/item content information. However, previous hybrid methods regularly suffered poor efficiency bottlenecking in online recommendations with large-scale items, because they were designed to project users and items into continuous latent space where the online recommendation is expensive. To this end, we propose a collaborative generated hashing (CGH) framework to improve the efficiency by denoting users and items as binary codes, then fast hashing search techniques can be used to speed up the online recommendation. In addition, the proposed CGH can generate potential users or items for marketing application where the generative network is designed with the principle of Minimum Description Length (MDL), which is used to learn compact and informative binary codes. Extensive experiments on two public datasets show the advantages for recommendations in various settings over competing baselines and analyze its feasibility in marketing application.
94 - Yinwei Wei , Xiang Wang , Qi Li 2021
Recommending cold-start items is a long-standing and fundamental challenge in recommender systems. Without any historical interaction on cold-start items, CF scheme fails to use collaborative signals to infer user preference on these items. To solve this problem, extensive studies have been conducted to incorporate side information into the CF scheme. Specifically, they employ modern neural network techniques (e.g., dropout, consistency constraint) to discover and exploit the coalition effect of content features and collaborative representations. However, we argue that these works less explore the mutual dependencies between content features and collaborative representations and lack sufficient theoretical supports, thus resulting in unsatisfactory performance. In this work, we reformulate the cold-start item representation learning from an information-theoretic standpoint. It aims to maximize the mutual dependencies between item content and collaborative signals. Specifically, the representation learning is theoretically lower-bounded by the integration of two terms: mutual information between collaborative embeddings of users and items, and mutual information between collaborative embeddings and feature representations of items. To model such a learning process, we devise a new objective function founded upon contrastive learning and develop a simple yet effective Contrastive Learning-based Cold-start Recommendation framework(CLCRec). In particular, CLCRec consists of three components: contrastive pair organization, contrastive embedding, and contrastive optimization modules. It allows us to preserve collaborative signals in the content representations for both warm and cold-start items. Through extensive experiments on four publicly accessible datasets, we observe that CLCRec achieves significant improvements over state-of-the-art approaches in both warm- and cold-start scenarios.
173 - Shuai Wang , Kun Zhang , Le Wu 2021
The cold start problem in recommender systems is a long-standing challenge, which requires recommending to new users (items) based on attributes without any historical interaction records. In these recommendation systems, warm users (items) have priv ileged collaborative signals of interaction records compared to cold start users (items), and these Collaborative Filtering (CF) signals are shown to have competing performance for recommendation. Many researchers proposed to learn the correlation between collaborative signal embedding space and the attribute embedding space to improve the cold start recommendation, in which user and item categorical attributes are available in many online platforms. However, the cold start recommendation is still limited by two embedding spaces modeling and simple assumptions of space transformation. As user-item interaction behaviors and user (item) attributes naturally form a heterogeneous graph structure, in this paper, we propose a privileged graph distillation model~(PGD). The teacher model is composed of a heterogeneous graph structure for warm users and items with privileged CF links. The student model is composed of an entity-attribute graph without CF links. Specifically, the teacher model can learn better embeddings of each entity by injecting complex higher-order relationships from the constructed heterogeneous graph. The student model can learn the distilled output with privileged CF embeddings from the teacher embeddings. Our proposed model is generally applicable to different cold start scenarios with new user, new item, or new user-new item. Finally, extensive experimental results on the real-world datasets clearly show the effectiveness of our proposed model on different types of cold start problems, with average $6.6%, 5.6%, $ and $17.1%$ improvement over state-of-the-art baselines on three datasets, respectively.
The item cold-start problem seriously limits the recommendation performance of Collaborative Filtering (CF) methods when new items have either none or very little interactions. To solve this issue, many modern Internet applications propose to predict a new items interaction from the possessing contents. However, it is difficult to design and learn a map between the items interaction history and the corresponding contents. In this paper, we apply the Wasserstein distance to address the item cold-start problem. Given item content information, we can calculate the similarity between the interacted items and cold-start ones, so that a users preference on cold-start items can be inferred by minimizing the Wasserstein distance between the distributions over these two types of items. We further adopt the idea of CF and propose Wasserstein CF (WCF) to improve the recommendation performance on cold-start items. Experimental results demonstrate the superiority of WCF over state-of-the-art approaches.
133 - Yitong Meng , Jie Liu , Xiao Yan 2020
When a new user just signs up on a website, we usually have no information about him/her, i.e. no interaction with items, no user profile and no social links with other users. Under such circumstances, we still expect our recommender systems could at tract the users at the first time so that the users decide to stay on the website and become active users. This problem falls into new user cold-start category and it is crucial to the development and even survival of a company. Existing works on user cold-start recommendation either require additional user efforts, e.g. setting up an interview process, or make use of side information [10] such as user demographics, locations, social relations, etc. However, users may not be willing to take the interview and side information on cold-start users is usually not available. Therefore, we consider a pure cold-start scenario where neither interaction nor side information is available and no user effort is required. Studying this setting is also important for the initialization of other cold-start solutions, such as initializing the first few questions of an interview.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا