ترغب بنشر مسار تعليمي؟ اضغط هنا

PRISA: a simple software for determining refractive index, extinction co-efficient, dispersion energy, band gap, and thickness of semiconductor and dielectric thin films

350   0   0.0 ( 0 )
 نشر من قبل Shuvendu Jena
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A simple user-friendly software named PRISA has been developed to determine optical constants (refractive index and extinction co-efficient), dispersion parameters (oscillator energy and dispersion energy), absorption co-efficient, band gap and thickness of semiconductor and dielectric thin films from their measured transmission spectrum, only. The thickness, refractive index, and extinction co-efficient of the films have been derived using Envelope method proposed by Swanepoel. The absorption co-efficient in the strong absorption region is calculated using the method proposed by Connel and Lewis. Subsequently, both direct and indirect bandgap of the films is estimated from the absorption co-efficient spectrum using Tauc plot. The codes for the software are written in Python and the graphical user interface is programmed with tkinter package of Python. It provides convenient input and output of the measured and derived data. The software has a feature to retrieve transmission spectrum using the derived parameters in order to check their reliability. The performance of the software is verified by analyzing numerically generated transmission spectra of a-Si:H amorphous semiconductor thin films, and experimentally measured transmission spectra of electron beam evaporated HfO2 dielectric thin films as examples. PRISA is found to be much simpler and accurate as compared to the other freely available softwares. To help other researchers working on thin films, the software is made freely available at https://www.shuvendujena.tk/download.



قيم البحث

اقرأ أيضاً

75 - Yashika Gupta , P.Arun 2016
Tin sulphide thin films of p-type conductivity were grown on glass substrates. The refractive index of the as grown films, calculated using both Transmission and ellipsometry data were found to follow the Sellmeier dispersion model. The improvement i n the dispersion data obtained using ellipsometry was validated by Wemple-Dedomenico (WDD) single oscillator model fitting. The optical properties of the films were found to be closely related to the structural properties of the films. The band-gap, its spread and appearance of defect levels within the band-gap intimately controls the refractive index of the films.
Materials combining both a high refractive index and a wide band gap are of great interest for optoelectronic and sensor applications. However, these two properties are typically described by an inverse correlation with high refractive index appearin g in small gap materials and vice-versa. Here, we conduct a first-principles high-throughput study on more than 4000 semiconductors (with a special focus on oxides). Our data confirm the general inverse trend between refractive index and band gap but interesting outliers are also identified. The data are then analyzed through a simple model involving two main descriptors: the average optical gap and the effective frequency. The former can be determined directly from the electronic structure of the compounds, but the latter cannot. This calls for further analysis in order to obtain a predictive model. Nonetheless, it turns out that the negative effect of a large band gap on the refractive index can counterbalanced in two ways: (i) by limiting the difference between the direct band gap and the average optical gap which can be realized by a narrow distribution in energy of the optical transitions and (ii) by increasing the effective frequency which can be achieved through either a high number of transitions from the top of the valence band to the bottom of the conduction or a high average probability for these transitions. Focusing on oxides, we use our data to investigate how the chemistry influences this inverse relationship and rationalize why certain classes of materials would perform better. Our findings can be used to search for new compounds in many optical applications both in the linear and non-linear regime (waveguides, optical modulators, laser, frequency converter, etc.).
The plasmonic properties of vacuum evaporated nanostructured gold thin films having different types of nanoparticles are presented. The films with more than 6 nm thickness show presence of nanorods having non cylindrical shape with triangular base. T wo characteristics plasmon bands have been recoreded in absorption spectra. First one occurs below 500 nm and other one at higher wavelength side. Both the peaks show dependence on the dielectric property of surroundings. The higher wavelength localized surface plasmon resonance (LSPR) peak shifts to higher wavelength with an increase in the nanoparticle size, surface roughness and refractive index of the surrounding (Methylene Blue dye coating). This shows that such thin films can be used as sensor for organic molecules with a refractive index sensitivity ranging from 250 - 305 nm/RIU (Refractive Index Unit).
The article demonstrates uncommon manifestation of spatial dispersion in low refractive index contrast 3D periodic dielectric composites with periods of about one tenth of the wavelength. First principles simulations by the well established plane wav e method reveal that spatial dispersion leads to appearance of additional optical axes and can compensate anisotropy in certain directions.
We describe a high-speed interferometric method, using multiple angles of incidence and multiple wavelengths, to measure the absolute thickness, tilt, the local angle between the surfaces, and the refractive index of a fluctuating transparent wedge. The method is well suited for biological, fluid and industrial applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا