ﻻ يوجد ملخص باللغة العربية
We prove a number of results on the determinacy of $sigma$-projective sets of reals, i.e., those belonging to the smallest pointclass containing the open sets and closed under complements, countable unions, and projections. We first prove the equivalence between $sigma$-projective determinacy and the determinacy of certain classes of games of variable length ${<}omega^2$ (Theorem 2.4). We then give an elementary proof of the determinacy of $sigma$-projective sets from optimal large-cardinal hypotheses (Theorem 4.4). Finally, we show how to generalize the proof to obtain proofs of the determinacy of $sigma$-projective games of a given countable length and of games with payoff in the smallest $sigma$-algebra containing the projective sets, from corresponding assumptions (Theorems 5.1 and 5.4).
The notion of a textbf{$boldsymbol{mathcal{C}}$-filtered} object, where $mathcal{C}$ is some (typically small) collection of objects in a Grothendieck category, has become ubiquitous since the solution of the Flat Cover Conjecture around the year 200
Let $M^sharp_n(mathbb{R})$ denote the minimal active iterable extender model which has $n$ Woodin cardinals and contains all reals, if it exists, in which case we denote by $M_n(mathbb{R})$ the class-sized model obtained by iterating the topmost meas
We determine the consistency strength of determinacy for projective games of length $omega^2$. Our main theorem is that $boldsymbolPi^1_{n+1}$-determinacy for games of length $omega^2$ implies the existence of a model of set theory with $omega + n$ W
In 2011, Rideau and Winskel introduced concurrent games and strategies as event structures, generalizing prior work on causal formulations of games. In this paper we give a detailed, self-contained and slightly-updated account of the results of Ridea
It is shown, from hypotheses in the region of $omega^2$ Woodin cardinals, that there is a transitive model of KP + AD$_mathbb{R}$ containing all reals.