ترغب بنشر مسار تعليمي؟ اضغط هنا

Projective Games on the Reals

79   0   0.0 ( 0 )
 نشر من قبل Sandra M\\\"uller
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $M^sharp_n(mathbb{R})$ denote the minimal active iterable extender model which has $n$ Woodin cardinals and contains all reals, if it exists, in which case we denote by $M_n(mathbb{R})$ the class-sized model obtained by iterating the topmost measure of $M_n(mathbb{R})$ class-many times. We characterize the sets of reals which are $Sigma_1$-definable from $mathbb{R}$ over $M_n(mathbb{R})$, under the assumption that projective games on reals are determined: (1) for even $n$, $Sigma_1^{M_n(mathbb{R})} = Game^mathbb{R}Pi^1_{n+1}$; (2) for odd $n$, $Sigma_1^{M_n(mathbb{R})} = Game^mathbb{R}Sigma^1_{n+1}$. This generalizes a theorem of Martin and Steel for $L(mathbb{R})$, i.e., the case $n=0$. As consequences of the proof, we see that determinacy of all projective games with moves in $mathbb{R}$ is equivalent to the statement that $M^sharp_n(mathbb{R})$ exists for all $ninmathbb{N}$, and that determinacy of all projective games of length $omega^2$ with moves in $mathbb{N}$ is equivalent to the statement that $M^sharp_n(mathbb{R})$ exists and satisfies $mathsf{AD}$ for all $ninmathbb{N}$.



قيم البحث

اقرأ أيضاً

We prove a number of results on the determinacy of $sigma$-projective sets of reals, i.e., those belonging to the smallest pointclass containing the open sets and closed under complements, countable unions, and projections. We first prove the equival ence between $sigma$-projective determinacy and the determinacy of certain classes of games of variable length ${<}omega^2$ (Theorem 2.4). We then give an elementary proof of the determinacy of $sigma$-projective sets from optimal large-cardinal hypotheses (Theorem 4.4). Finally, we show how to generalize the proof to obtain proofs of the determinacy of $sigma$-projective games of a given countable length and of games with payoff in the smallest $sigma$-algebra containing the projective sets, from corresponding assumptions (Theorems 5.1 and 5.4).
98 - Sean D. Cox 2020
The notion of a textbf{$boldsymbol{mathcal{C}}$-filtered} object, where $mathcal{C}$ is some (typically small) collection of objects in a Grothendieck category, has become ubiquitous since the solution of the Flat Cover Conjecture around the year 200 0. We introduce the textbf{$boldsymbol{mathcal{C}}$-Filtration Game of length $boldsymbol{omega_1}$} on a module, paying particular attention to the case where $mathcal{C}$ is the collection of all countably presented, projective modules. We prove that Martins Maximum implies the determinacy of many $mathcal{C}$-Filtration Games of length $omega_1$, which in turn imply the determinacy of certain Ehrenfeucht-Fraiss{e} games of length $omega_1$; this allows a significant strengthening of a theorem of Mekler-Shelah-Vaananen cite{MR1191613}. Also, Martins Maximum implies that if $R$ is a countable hereditary ring, the class of textbf{$boldsymbol{sigma}$-closed potentially projective modules}---i.e., those modules that are projective in some $sigma$-closed forcing extension of the universe---is closed under $<aleph_2$-directed limits. We also give an example of a (ZFC-definable) class of abelian groups that, under the ordinary subgroup relation, constitutes an Abstract Elementary Class (AEC) with Lowenheim-Skolem number $aleph_1$ in some models in set theory, but fails to be an AEC in other models of set theory.
We study the randomness properties of reals with respect to arbitrary probability measures on Cantor space. We show that every non-computable real is non-trivially random with respect to some measure. The probability measures constructed in the proof may have atoms. If one rules out the existence of atoms, i.e. considers only continuous measures, it turns out that every non-hyperarithmetical real is random for a continuous measure. On the other hand, examples of reals not random for any continuous measure can be found throughout the hyperarithmetical Turing degrees.
N. Hindman, I. Leader and D. Strauss proved that it is consistent that there is a finite colouring of $mathbb R$ so that no infinite sumset $X+X={x+y:x,yin X}$ is monochromatic. Our aim in this paper is to prove a consistency result in the opposite d irection: we show that, under certain set-theoretic assumptions, for any $c:mathbb Rto r$ with $r$ finite there is an infinite $Xsubseteq mathbb R$ so that $c$ is constant on $X+X$.
We construct a model of $mathsf{ZF} + mathsf{DC}$ containing a Luzin set, a Sierpi{n}ski set, as well as a Burstin basis but in which there is no a well ordering of the continuum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا