ترغب بنشر مسار تعليمي؟ اضغط هنا

Interaction of void spacing and material size effect on inter-void flow localisation

55   0   0.0 ( 0 )
 نشر من قبل Emilio Mart\\'inez-Pa\\~neda
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ductile fracture process in porous metals due to growth and coalescence of micron scale voids is not only affected by the imposed stress state but also by the distribution of the voids and the material size effect. The objective of this work is to understand the interaction of the inter-void spacing (or ligaments) and the resultant gradient induced material size effect on void coalescence for a range of imposed stress states. To this end, three dimensional finite element calculations of unit cell models with a discrete void embedded in a strain gradient enhanced material matrix are performed. The calculations are carried out for a range of initial inter-void ligament sizes and imposed stress states characterised by fixed values of the stress triaxiality and the Lode parameter. Our results show that in the absence of strain gradient effects on the material response, decreasing the inter-void ligament size results in an increase in the propensity for void coalescence. However, in a strain gradient enhanced material matrix, the strain gradients harden the material in the inter-void ligament and decrease the effect of inter-void ligament size on the propensity for void coalescence.



قيم البحث

اقرأ أيضاً

We analyze photometry from deep B-band images of 59 void galaxies in the Void Galaxy Survey (VGS), together with their near-infrared 3.6$mu$m and 4.5$mu$m Spitzer photometry. The VGS galaxies constitute a sample of void galaxies that were selected by a geometric-topological procedure from the SDSS DR7 data release, and which populate the deep interior of voids. Our void galaxies span a range of absolute B-magnitude from $rm{M_B=-15.5}$ to $rm{M_B=-20}$, while at the 3.6$mu$m band their magnitudes range from $rm{M_{3.6}=-18}$ to $rm{M_{3.6}=-24}$. Their B-[3.6] colour and structural parameters indicate these are star forming galaxies. A good reflection of the old stellar population, the near-infrared band photometry also provide a robust estimate of the stellar mass, which for the VGS galaxies we confirm to be smaller than $3 times 10^{10}$ M$_odot$. In terms of the structural parameters and morphology, our findings align with other studies in that our VGS galaxy sample consists mostly of small late-type galaxies. Most of them are similar to Sd-Sm galaxies, although a few are irregularly shaped galaxies. The sample even includes two early-type galaxies, one of which is an AGN. Their S{e}rsic indices are nearly all smaller than $n=2$ in both bands and they also have small half-light radii. In all, we conclude that the principal impact of the void environment on the galaxies populating them mostly concerns their low stellar mass and small size.
Cosmic voids are becoming key players in testing the physics of our Universe. Here we concentrate on the abundances and the dynamics of voids as these are among the best candidates to provide information on cosmological parameters. Cai, Padilla & Li (2014) use the abundance of voids to tell apart Hu & Sawicki $f(R)$ models from General Relativity. An interesting result is that even though, as expected, voids in the dark matter field are emptier in $f(R)$ gravity due to the fifth force expelling away from the void centres, this result is reversed when haloes are used to find voids. The abundance of voids in this case becomes even lower in $f(R)$ compared to GR for large voids. Still, the differences are significant and this provides a way to tell apart these models. The velocity field differences between $f(R)$ and GR, on the other hand, are the same for halo voids and for dark matter voids. Paz et al. (2013), concentrate on the velocity profiles around voids. First they show the necessity of four parameters to describe the density profiles around voids given two distinct void populations, voids-in-voids and voids-in-clouds. This profile is used to predict peculiar velocities around voids, and the combination of the latter with void density profiles allows the construction of model void-galaxy cross-correlation functions with redshift space distortions. When these models are tuned to fit the measured correlation functions for voids and galaxies in the Sloan Digital Sky Survey, small voids are found to be of the void-in-cloud type, whereas larger ones are consistent with being void-in-void. This is a novel result that is obtained directly from redshift space data around voids. These profiles can be used to remove systematics on void-galaxy Alcock-Pacinsky tests coming from redshift-space distortions.
Void-defect is a possible origin of ferromagnetic feature on pure carbon materials. In our previous paper, void-defect on graphene-nanoribbon show highly polarized spin configuration. In this paper, we studied cases for graphene molecules by quantum theory, by astronomical observation and by laboratory experiment. Model molecules for the density functional theory are graphene molecules of C23 and C53 induced by a void-defect. They have carbon pentagon ring within a hexagon network. Single void has three radical carbons, holding six spins. Those spins make several spin-states, which affects to molecular structure and molecular vibration, finally to infrared spectrum. The stable spin state was triplet, not singlet. This suggests magnetic pure carbon molecule. It was a surprise that those molecules show close infrared spectrum with astronomically observed one, especially observed on carbon rich planetary nebulae. We could assign major band at 18.9 micrometer, and sub-bands at 6.6, 7.0, 7.6, 8.1, 8.5, 9.0 and 17.4 micrometer. Also, calculated spectrum roughly coincides with that of laboratory experiment by the laser-induced carbon plasma, which is an analogy of cosmic carbon creation in interstellar space.
Void-defect induced magnetism of graphene molecule was recently reported in our previous paper of this series study. This paper investigated the case of hydrogenated graphene molecule, in chemical term, polycyclic aromatic hydrocarbon (PAH). Molecula r infrared spectrum obtained by density functional theory was compared with astronomical observation. Void-defect on PAH caused serious structure change. Typical example of C23H12 had two carbon pentagon rings among hexagon networks. Stable spin state was non-magnetic singlet state. This is contrary to pure carbon case of C23, which show magnetic triplet state. It was discussed that Hydrogen played an important role to diminish magnetism by creating an SP3-bond among SP2-networks. Such a structure change affected molecular vibration and finally to photoemission spectrum in infrared region. The dication-C23H12 showed featured bands at 3.2, 6.3, 7.7, 8.6, 11.2, and 12.7 micrometer. It was surprising that those calculated bands coincided well with astronomically observed bands in many planetary nebulae. To confirm our study, large size molecule of C53H18 was studied. Calculation reproduced again similar astronomical bands. Also, small size molecule of C12H8 showed good coincidence with the spectrum observed for young stars. This paper would be the first report to indicate the specific PAH in space.
64 - P. J. E. Peebles 2001
Advances in theoretical ideas on how galaxies formed have not been strongly influenced by the advances in observations of what might be in the voids between the concentrations of ordinary optically selected galaxies. The theory and observations are m aturing, and the search for a reconciliation offers a promising opportunity to improve our understanding of cosmic evolution. I comment on the development of this situation and present an update of a nearest neighbor measure of the void phenomenon that may be of use in evaluating theories of galaxy formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا