ترغب بنشر مسار تعليمي؟ اضغط هنا

Void defect induced magnetism and structure change of carbon material-3, Polycyclic aromatic hydrocarbon

178   0   0.0 ( 0 )
 نشر من قبل Norio Ota
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Void-defect induced magnetism of graphene molecule was recently reported in our previous paper of this series study. This paper investigated the case of hydrogenated graphene molecule, in chemical term, polycyclic aromatic hydrocarbon (PAH). Molecular infrared spectrum obtained by density functional theory was compared with astronomical observation. Void-defect on PAH caused serious structure change. Typical example of C23H12 had two carbon pentagon rings among hexagon networks. Stable spin state was non-magnetic singlet state. This is contrary to pure carbon case of C23, which show magnetic triplet state. It was discussed that Hydrogen played an important role to diminish magnetism by creating an SP3-bond among SP2-networks. Such a structure change affected molecular vibration and finally to photoemission spectrum in infrared region. The dication-C23H12 showed featured bands at 3.2, 6.3, 7.7, 8.6, 11.2, and 12.7 micrometer. It was surprising that those calculated bands coincided well with astronomically observed bands in many planetary nebulae. To confirm our study, large size molecule of C53H18 was studied. Calculation reproduced again similar astronomical bands. Also, small size molecule of C12H8 showed good coincidence with the spectrum observed for young stars. This paper would be the first report to indicate the specific PAH in space.

قيم البحث

اقرأ أيضاً

Void-defect is a possible origin of ferromagnetic feature on pure carbon materials. In our previous paper, void-defect on graphene-nanoribbon show highly polarized spin configuration. In this paper, we studied cases for graphene molecules by quantum theory, by astronomical observation and by laboratory experiment. Model molecules for the density functional theory are graphene molecules of C23 and C53 induced by a void-defect. They have carbon pentagon ring within a hexagon network. Single void has three radical carbons, holding six spins. Those spins make several spin-states, which affects to molecular structure and molecular vibration, finally to infrared spectrum. The stable spin state was triplet, not singlet. This suggests magnetic pure carbon molecule. It was a surprise that those molecules show close infrared spectrum with astronomically observed one, especially observed on carbon rich planetary nebulae. We could assign major band at 18.9 micrometer, and sub-bands at 6.6, 7.0, 7.6, 8.1, 8.5, 9.0 and 17.4 micrometer. Also, calculated spectrum roughly coincides with that of laboratory experiment by the laser-induced carbon plasma, which is an analogy of cosmic carbon creation in interstellar space.
81 - Norio Ota , Laszlo Nemes 2021
Void defect is a possible origin of ferromagnetic like feature of pure carbon material. Applying density functional theory to void defect induced graphene nano ribbon (GNR), a detailed relationship between multiple spin state and structure change was studied. An equitorial triangle of an initial initial void having six electrons is distorted to isosceles triangle by rebonding carbon atoms. Among possible spin states, the most stable state was Sz=2/2. The case of Sz=4/2 is remarkable that initial flat ribbon turned to three dimentional curled one having highly polarized spin configuration at ribbon edges. Total energy of Sz=4/2 was very close to that of Sz=2/2, which suggests coexistence of flat and curled ribbons. As a model of three dimensional graphite, bilayered AB stacked GNR was analyzed. Spin distribution was limited to the void created layer. Distributed void triangle show 60 degree clockwise rotation for differrent site void, which was consistent with experimental observation using the scanning tunneling microscope. (To be published on Journal of the Magnetic Society of Japan, 2021 )
93 - E. R. Micelotta 2009
Context: PAHs appear to be an ubiquitous interstellar dust component but the effects of shocks waves upon them have never been fully investigated. Aims: To study the effects of energetic (~0.01-1 keV) ion (H, He and C) and electron collisions on PAHs in interstellar shock waves.Methods: We calculate the ion-PAH and electron-PAH nuclear and electronic interactions, above the threshold for carbon atom loss from a PAH, in 50-200 km/s shock waves in the warm intercloud medium. Results: Interstellar PAHs (Nc = 50) do not survive in shocks with velocities greater than 100 km/s and larger PAHs (Nc = 200) are destroyed for shocks with velocities greater/equal to 125 km/s. For shocks in the ~75 - 100 km/s range, where destruction is not complete, the PAH structure is likely to be severely denatured by the loss of an important fraction (20-40%) of the carbon atoms. We derive typical PAH lifetimes of the order of a few x10^8 yr for the Galaxy. These results are robust and independent of the uncertainties in some key parameters that have yet to be well-determined experimentally. Conclusions: The observation of PAH emission in shock regions implies that that emission either arises outside the shocked region or that those regions entrain denser clumps that, unless they are completely ablated and eroded in the shocked gas, allow dust and PAHs to survive in extreme environments.
111 - E. R. Micelotta (1 , 2 , 3 2010
Context: Cosmic rays are present in almost all phases of the ISM. PAHs and cosmic rays represent an abundant and ubiquitous component of the interstellar medium. However, the interaction between them has never before been fully investigated. Aims: To study the effects of cosmic ray ion (H, He, CNO and Fe-Co-Ni) and electron bombardment of PAHs in galactic and extragalactic environments. Methods: We calculate the nuclear and electronic interactions for collisions between PAHs and cosmic ray ions and electrons with energies between 5 MeV/nucleon and 10 GeV, above the threshold for carbon atom loss, in normal galaxies, starburst galaxies and cooling flow galaxy clusters. Results: The timescale for PAH destruction by cosmic ray ions depends on the electronic excitation energy Eo and on the amount of energy available for dissociation. Small PAHs are destroyed faster, with He and the CNO group being the more effective projectiles. For electron collisions, the lifetime is independent of the PAH size and varies with the threshold energy To. Conclusions: Cosmic rays process the PAHs in diffuse clouds, where the destruction due to interstellar shocks is less efficient. In the hot gas filling galactic halos, outflows of starburst galaxies and intra-cluster medium, PAH destruction is dominated by collisions with thermal ions and electrons, but this mechanism is ineffective if the molecules are in denser cloudlets and isolated from the hot gas. Cosmic rays can access the denser clouds and together with X-rays will set the lifetime of those protected PAHs. This limits the use of PAHs as a`dye for tracing the presence of cold entrained material.
105 - Norio Ota 2018
Interstellar infrared observation shows featured spectrum due to polycyclic aromatic hydrocarbon (PAH)at wavelength 3.3,6.2,7.6,7.8,8.6,and 11.3 micrometer,which are ubiquitously observed in many astronomical dust clouds and galaxies. Our previous fi rst principles calculation revieled that viod induced coronene (C23H12)2+ and circumcoronene (C53H18)1+ could reproduce such spectrum very well. In this study, quantum-mechanic origin was studied through atomic configuration change and atomic vibration mode analysis. By a high speed particle attack, carbon void would be introduced in PAH. Molecular configuration was deformed by the Jahn-Teller quantum effect. Carbon SP3 local bond was created among SP2 graphene like carbon network. Also, carbon tetrahedron local structure was created. Such peculiar structure is the quantum origin. Those metamorphosed molecules would be photo-ionized by the central star strong photon irradiation resulting cation molecules. Atomic vibration mode of cation molecule (C23H12)2+ was compared with that of neutral one (C23H12). At 3.3 micrometer, both molecules show show C-H stretching mode and give fairly large infrared intensity. At 6.2,7.6,7.8, and 8.6 micrometer bands, cation molecule show complex C-C stretching and shrinking mixing modes and remain large infrared emission. Whereas, neutral molecule gives harmonic motion, which cancelles each other resulting very small infrared intensity. At 11.3 micrometer, both neutral and cation molecules show C-H bending motion perpendicular to a molecular plane, which contributes to strong emission. Actual observed spectrum would be a sum of such quantum-mechanic origined molecules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا