ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-wave dynamics and symmetry breaking in an artificial spin ice

77   0   0.0 ( 0 )
 نشر من قبل Sebastian Gliga
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Artificial spin ices are periodic arrangements of interacting nanomagnets successfully used to investigate emergent phenomena in the presence of geometric frustration. Recently, it has been shown that artificial spin ices can be used as building blocks for creating functional materials, such as magnonic crystals, and support a large number of programmable magnetic states. We investigate the magnetization dynamics in a system exhibiting anisotropic magnetostatic interactions owing to locally broken structural inversion symmetry. We find a rich spin-wave spectrum and investigate its evolution in an external magnetic field. We determine the evolution of individual modes, from building blocks up to larger arrays, highlighting the role of symmetry breaking in defining the mode profiles. Moreover, we demonstrate that the mode spectra exhibit signatures of long-range interactions in the system. These results contribute to the understanding of magnetization dynamics in spin ices beyond the kagome and square ice geometries and are relevant for the realization of reconfigurable magnonic crystals based on spin ices.

قيم البحث

اقرأ أيضاً

140 - S. Mamica , X. Zhou , A. Adeyeye 2018
Reversed structures of artificial spin-ice systems, where elongated holes with elliptical shape (antidots) are arranged into a square array with two orthogonal sublattices, are referred to as anti-squared spin-ice. Using Brillouin light scattering sp ectroscopy and plane wave method calculations, we investigate the spin wave propagation perpendicular to the applied field direction for two 20 nm thick Permalloy nanostructures which differ by the presence of single and double elliptical antidots. For the spin waves propagation along the principal antidot lattice axis, the spectrum consists of flat bands separated by several frequency gaps which are the effect of spin wave amplitude confinement in the regions between antidots. Contrarily, for propagation direction at 45 degrees with respect to the antidot symmetry axis, straight and narrow channels of propagation are formed, leading to broadening of bands and closing of the magnonics gaps. Interestingly, in this case, extra magnonic band gaps occur due to the additional periodicity along this direction. The width and the position of these gaps depend on the presence of single or double antidots. In this context, we discuss possibilities for the tuning of spin wave spectra in anti-squared spin ice structures.
230 - R. Puttock , A. Manzin , V. Neu 2019
Here an artificial spin ice (ASI) lattice is introduced that exhibits unique Ising and non-Ising behavior under specific field switching protocols because of the inclusion of coupled nanomagnets into the unit cell. In the Ising regime, a magnetic swi tching mechanism that generates a uni- or bimodal distribution of states dependent on the alignment of the field is demonstrated with respect to the lattice unit cell. In addition, a method for generating a plethora of randomly distributed energy states across the lattice, consisting of Ising and Landau states, is investigated through magnetic force microscopy and micromagnetic modeling. We demonstrate that the dispersed energy distribution across the lattice is a result of the intrinsic design and can be finely tuned through control of the incident angle of a critical field. The present manuscript explores a complex frustrated environment beyond the 16-vertex Ising model for the development of novel logic-based technologies.
Strongly-interacting artificial spin systems are moving beyond mimicking naturally-occuring materials to find roles as versatile functional platforms, from reconfigurable magnonics to designer magnetic metamaterials. Typically artificial spin systems comprise nanomagnets with a single magnetisation texture: collinear macrospins or chiral vortices. By tuning nanoarray dimensions we achieve macrospin/vortex bistability and demonstrate a four-state metamaterial spin-system Artificial Spin-Vortex Ice (ASVI). ASVI is capable of adopting Ising-like macrospins with strong ice-like vertex interactions, in addition to weakly-coupled vortices with low stray dipolar-field. The enhanced bi-texture microstate space gives rise to emergent physical memory phenomena, with ratchet-like vortex training and history-dependent nonlinear training dynamics. We observe vortex-domain formation alongside MFM tip vortex-writing. Tip-written vortices dramatically alter local reversal and memory dynamics. Vortices and macrospins exhibit starkly-differing spin-wave spectra with analogue-style mode-amplitude control via vortex training and mode-frequency shifts of df = 3.8 GHz. We leverage spin-wave spectral fingerprinting for rapid, scaleable readout of vortex and macrospin populations over complex training-protocols with applicability for functional magnonics and physical memory.
Artificial spin ice systems have seen burgeoning interest due to their intriguing physics and potential applications in reprogrammable memory, logic and magnonics. In-depth comparisons of distinct artificial spin systems are crucial to advancing the field and vital work has been done on characteristic behaviours of artificial spin ices arranged on different geometric lattices. Integration of artificial spin ice with functional magnonics is a relatively recent research direction, with a host of promising early results. As the field progresses, studies examining the effects of lattice geometry on the magnonic response are increasingly significant. While studies have investigated the effects of different lattice tilings such as square and kagome (honeycomb), little comparison exists between systems comprising continuously-connected nanostructures, where spin-waves propagate through the system via exchange interaction, and systems with nanobars disconnected at vertices where spin-waves are transferred via stray dipolar-field. Here, we perform a Brillouin light scattering study of the magnonic response in two kagome artificial spin ices, a continuously-connected system and a disconnected system with vertex gaps. We observe distinctly different high-frequency dynamics and characteristic magnetization reversal regimes between the systems, with key distinctions in system microstate during reversal, internal field profiles and spin-wave mode quantization numbers. These observations are pertinent for the fundamental understanding of artificial spin systems and the design and engineering of such systems for functional magnonic applications.
Artificial spin ices are ensembles of geometrically-arranged, interacting nanomagnets which have shown promising potential for the realization of reconfigurable magnonic crystals. Such systems allow for the manipulation of spin waves on the nanoscale and their potential use as information carriers. However, there are presently two general obstacles to the realization of artificial spin ice-based magnonic crystals: the magnetic state of artificial spin ices is difficult to reconfigure and the magnetostatic interactions between the nanoislands are often weak, preventing mode coupling. We demonstrate, using micromagnetic modeling, that coupling a reconfigurable artificial spin ice geometry made of weakly interacting nanomagnets to a soft magnetic underlayer creates a complex system exhibiting dynamically coupled modes. These give rise to spin wave channels in the underlayer at well-defined frequencies, based on the artificial spin ice magnetic state, which can be reconfigured. These findings open the door to the realization of reconfigurable magnonic crystals with potential applications for data transport and processing in magnonic-based logic architectures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا