ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin wave dynamics in artificial anti spin-ice systems: experimental and theoretical investigations

141   0   0.0 ( 0 )
 نشر من قبل Slawomir Mamica
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Reversed structures of artificial spin-ice systems, where elongated holes with elliptical shape (antidots) are arranged into a square array with two orthogonal sublattices, are referred to as anti-squared spin-ice. Using Brillouin light scattering spectroscopy and plane wave method calculations, we investigate the spin wave propagation perpendicular to the applied field direction for two 20 nm thick Permalloy nanostructures which differ by the presence of single and double elliptical antidots. For the spin waves propagation along the principal antidot lattice axis, the spectrum consists of flat bands separated by several frequency gaps which are the effect of spin wave amplitude confinement in the regions between antidots. Contrarily, for propagation direction at 45 degrees with respect to the antidot symmetry axis, straight and narrow channels of propagation are formed, leading to broadening of bands and closing of the magnonics gaps. Interestingly, in this case, extra magnonic band gaps occur due to the additional periodicity along this direction. The width and the position of these gaps depend on the presence of single or double antidots. In this context, we discuss possibilities for the tuning of spin wave spectra in anti-squared spin ice structures.

قيم البحث

اقرأ أيضاً

Artificial spin ices are periodic arrangements of interacting nanomagnets successfully used to investigate emergent phenomena in the presence of geometric frustration. Recently, it has been shown that artificial spin ices can be used as building bloc ks for creating functional materials, such as magnonic crystals, and support a large number of programmable magnetic states. We investigate the magnetization dynamics in a system exhibiting anisotropic magnetostatic interactions owing to locally broken structural inversion symmetry. We find a rich spin-wave spectrum and investigate its evolution in an external magnetic field. We determine the evolution of individual modes, from building blocks up to larger arrays, highlighting the role of symmetry breaking in defining the mode profiles. Moreover, we demonstrate that the mode spectra exhibit signatures of long-range interactions in the system. These results contribute to the understanding of magnetization dynamics in spin ices beyond the kagome and square ice geometries and are relevant for the realization of reconfigurable magnonic crystals based on spin ices.
Artificial spin ice systems have seen burgeoning interest due to their intriguing physics and potential applications in reprogrammable memory, logic and magnonics. In-depth comparisons of distinct artificial spin systems are crucial to advancing the field and vital work has been done on characteristic behaviours of artificial spin ices arranged on different geometric lattices. Integration of artificial spin ice with functional magnonics is a relatively recent research direction, with a host of promising early results. As the field progresses, studies examining the effects of lattice geometry on the magnonic response are increasingly significant. While studies have investigated the effects of different lattice tilings such as square and kagome (honeycomb), little comparison exists between systems comprising continuously-connected nanostructures, where spin-waves propagate through the system via exchange interaction, and systems with nanobars disconnected at vertices where spin-waves are transferred via stray dipolar-field. Here, we perform a Brillouin light scattering study of the magnonic response in two kagome artificial spin ices, a continuously-connected system and a disconnected system with vertex gaps. We observe distinctly different high-frequency dynamics and characteristic magnetization reversal regimes between the systems, with key distinctions in system microstate during reversal, internal field profiles and spin-wave mode quantization numbers. These observations are pertinent for the fundamental understanding of artificial spin systems and the design and engineering of such systems for functional magnonic applications.
Artificial spin ices are ensembles of geometrically-arranged, interacting nanomagnets which have shown promising potential for the realization of reconfigurable magnonic crystals. Such systems allow for the manipulation of spin waves on the nanoscale and their potential use as information carriers. However, there are presently two general obstacles to the realization of artificial spin ice-based magnonic crystals: the magnetic state of artificial spin ices is difficult to reconfigure and the magnetostatic interactions between the nanoislands are often weak, preventing mode coupling. We demonstrate, using micromagnetic modeling, that coupling a reconfigurable artificial spin ice geometry made of weakly interacting nanomagnets to a soft magnetic underlayer creates a complex system exhibiting dynamically coupled modes. These give rise to spin wave channels in the underlayer at well-defined frequencies, based on the artificial spin ice magnetic state, which can be reconfigured. These findings open the door to the realization of reconfigurable magnonic crystals with potential applications for data transport and processing in magnonic-based logic architectures.
Artificial square spin ices are structures composed of magnetic elements arranged on a geometrically frustrated lattice and located on the sites of a two-dimensional square lattice, such that there are four interacting magnetic elements at each verte x. Using a semi-analytical approach, we show that square spin ices exhibit a rich spin wave band structure that is tunable both by external magnetic fields and the configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors. Full-scale micromagnetic simulations corroborate our semi-analytical approach. Our results show that artificial square spin ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.
We report the experimental and theoretical characterization of the angular-dependent spin dynamics in arrays of ferromagnetic nanodisks arranged on a honeycomb lattice. The magnetic field and microwave frequency dependence, measured by broadband ferr omagnetic resonance, reveal a rich spectrum of modes that is strongly affected by the microstate of the network. Based on symmetry arguments with respect to the external field, we show that certain parts of the ferromagnetic network contribute to the detected signal. A comparison of the experimental data with micromagnetic simulations reveals that different subsections of the lattice predominantly contribute to the high-frequency response of the array. This is confirmed by optical characterizations using microfocused Brillouin light scattering. Furthermore, we find indications that nucleation and annihilation of vortex-like magnetization configurations in the low-field range affect the dynamics, which is different from clusters of ferromagnetic nanoellipses. Our work opens up new perspectives for designing magnonic devices that combine geometric frustration in gyrotropic vortex crystals at low frequencies with magnonic crystals at high frequencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا