ترغب بنشر مسار تعليمي؟ اضغط هنا

Maximizing Store Revenues using Tabu Search for Floor Space Optimization

83   0   0.0 ( 0 )
 نشر من قبل Alvin Lim
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Floor space optimization is a critical revenue management problem commonly encountered by retailers. It maximizes store revenue by optimally allocating floor space to product categories which are assigned to their most appropriate planograms. We formulate the problem as a connected multi-choice knapsack problem with an additional global constraint and propose a tabu search based meta-heuristic that exploits the multiple special neighborhood structures. We also incorporate a mechanism to determine how to combine the multiple neighborhood moves. A candidate list strategy based on learning from prior search history is also employed to improve the search quality. The results of computational testing with a set of test problems show that our tabu search heuristic can solve all problems within a reasonable amount of time. Analyses of individual contributions of relevant components of the algorithm were conducted with computational experiments.



قيم البحث

اقرأ أيضاً

362 - Hu Qin , Zizhen Zhang , Yubin Xie 2014
This paper introduces a multi-period inspector scheduling problem (MPISP), which is a new variant of the multi-trip vehicle routing problem with time windows (VRPTW). In the MPISP, each inspector is scheduled to perform a route in a given multi-perio d planning horizon. At the end of each period, each inspector is not required to return to the depot but has to stay at one of the vertices for recuperation. If the remaining time of the current period is insufficient for an inspector to travel from his/her current vertex $A$ to a certain vertex B, he/she can choose either waiting at vertex A until the start of the next period or traveling to a vertex C that is closer to vertex B. Therefore, the shortest transit time between any vertex pair is affected by the length of the period and the departure time. We first describe an approach of computing the shortest transit time between any pair of vertices with an arbitrary departure time. To solve the MPISP, we then propose several local search operators adapted from classical operators for the VRPTW and integrate them into a tabu search framework. In addition, we present a constrained knapsack model that is able to produce an upper bound for the problem. Finally, we evaluate the effectiveness of our algorithm with extensive experiments based on a set of test instances. Our computational results indicate that our approach generates high-quality solutions.
Despite recent progress in robot learning, it still remains a challenge to program a robot to deal with open-ended object manipulation tasks. One approach that was recently used to autonomously generate a repertoire of diverse skills is a novelty bas ed Quality-Diversity~(QD) algorithm. However, as most evolutionary algorithms, QD suffers from sample-inefficiency and, thus, it is challenging to apply it in real-world scenarios. This paper tackles this problem by integrating a neural network that predicts the behavior of the perturbed parameters into a novelty based QD algorithm. In the proposed Model-based Quality-Diversity search (M-QD), the network is trained concurrently to the repertoire and is used to avoid executing unpromising actions in the novelty search process. Furthermore, it is used to adapt the skills of the final repertoire in order to generalize the skills to different scenarios. Our experiments show that enhancing a QD algorithm with such a forward model improves the sample-efficiency and performance of the evolutionary process and the skill adaptation.
This paper describes an optimisation methodology that has been specifically developed for engineering design problems. The methodology is based on a Tabu search (TS) algorithm that has been shown to find high quality solutions with a relatively low n umber of objective function evaluations. Whilst the methodology was originally intended for a small range of design problems it has since been successfully applied to problems from different domains with no alteration to the underlying method. This paper describes the method and its application to three different problems. The first is from the field of structural design, the second relates to the design of electromagnetic pole shapes and the third involves the design of turbomachinery blades.
Dynamic Multi-objective Optimization Problems (DMOPs) refer to optimization problems that objective functions will change with time. Solving DMOPs implies that the Pareto Optimal Set (POS) at different moments can be accurately found, and this is a v ery difficult job due to the dynamics of the optimization problems. The POS that have been obtained in the past can help us to find the POS of the next time more quickly and accurately. Therefore, in this paper we present a Support Vector Machine (SVM) based Dynamic Multi-Objective Evolutionary optimization Algorithm, called SVM-DMOEA. The algorithm uses the POS that has been obtained to train a SVM and then take the trained SVM to classify the solutions of the dynamic optimization problem at the next moment, and thus it is able to generate an initial population which consists of different individuals recognized by the trained SVM. The initial populuation can be fed into any population based optimization algorithm, e.g., the Nondominated Sorting Genetic Algorithm II (NSGA-II), to get the POS at that moment. The experimental results show the validity of our proposed approach.
We study the novel problem of blackbox optimization of multiple objectives via multi-fidelity function evaluations that vary in the amount of resources consumed and their accuracy. The overall goal is to approximate the true Pareto set of solutions b y minimizing the resources consumed for function evaluations. For example, in power system design optimization, we need to find designs that trade-off cost, size, efficiency, and thermal tolerance using multi-fidelity simulators for design evaluations. In this paper, we propose a novel approach referred as Multi-Fidelity Output Space Entropy Search for Multi-objective Optimization (MF-OSEMO) to solve this problem. The key idea is to select the sequence of candidate input and fidelity-vector pairs that maximize the information gained about the true Pareto front per unit resource cost. Our experiments on several synthetic and real-world benchmark problems show that MF-OSEMO, with both approximations, significantly improves over the state-of-the-art single-fidelity algorithms for multi-objective optimization.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا