ﻻ يوجد ملخص باللغة العربية
In medical imaging, outliers can contain hypo/hyper-intensities, minor deformations, or completely altered anatomy. To detect these irregularities it is helpful to learn the features present in both normal and abnormal images. However this is difficult because of the wide range of possible abnormalities and also the number of ways that normal anatomy can vary naturally. As such, we leverage the natural variations in normal anatomy to create a range of synthetic abnormalities. Specifically, the same patch region is extracted from two independent samples and replaced with an interpolation between both patches. The interpolation factor, patch size, and patch location are randomly sampled from uniform distributions. A wide residual encoder decoder is trained to give a pixel-wise prediction of the patch and its interpolation factor. This encourages the network to learn what features to expect normally and to identify where foreign patterns have been introduced. The estimate of the interpolation factor lends itself nicely to the derivation of an outlier score. Meanwhile the pixel-wise output allows for pixel- and subject- level predictions using the same model.
With the advent of future big-data surveys, automated tools for unsupervised discovery are becoming ever more necessary. In this work, we explore the ability of deep generative networks for detecting outliers in astronomical imaging datasets. The mai
The security of object detection systems has attracted increasing attention, especially when facing adversarial patch attacks. Since patch attacks change the pixels in a restricted area on objects, they are easy to implement in the physical world, es
Deep neural networks (DNNs) are known to produce incorrect predictions with very high confidence on out-of-distribution (OOD) inputs. This limitation is one of the key challenges in the adoption of deep learning models in high-assurance systems such
Vision transformer has demonstrated promising performance on challenging computer vision tasks. However, directly training the vision transformers may yield unstable and sub-optimal results. Recent works propose to improve the performance of the visi
AutoAugment has been a powerful algorithm that improves the accuracy of many vision tasks, yet it is sensitive to the operator space as well as hyper-parameters, and an improper setting may degenerate network optimization. This paper delves deep into