ﻻ يوجد ملخص باللغة العربية
We generalize the formalism of the dynamical vertex approximation (D$Gamma$A) -- a diagrammatic extension of the dynamical mean-field theory (DMFT)-- to treat magnetically ordered phases. To this aim, we start by concisely illustrating the many-electron formalism for performing ladder resummations of Feynman diagrams in systems with broken SU(2)-symmetry, associated to ferromagnetic (FM) or antiferromagnetic (AF) order. We then analyze the algorithmic simplifications introduced by taking the local approximation of the two-particle irreducible vertex functions in the Bethe-Salpeter equations, which defines the ladder implementation of D$Gamma$A for magnetic systems. The relation of this assumption with the DMFT limit of large coordination-number/ high-dimensions is explicitly discussed. As a last step, we derive the expression for the ladder D$Gamma$A self-energy in the FM- and AF-ordered phases of the Hubbard model. The physics emerging in the AF-ordered case is explicitly illustrated by means of approximated calculations based on a static mean-field input for the D$Gamma$A equations. The results obtained capture fundamental aspects of both metallic and insulating ground states of two-dimensional antiferromagnets, providing a reliable compass for future, more extensive applications of our approach. Possible routes to further develop diagrammatic-based treatments of magnetic phases in correlated electron systems are briefly outlined in the conclusions.
We propose an approach for the ab initio calculation of materials with strong electronic correlations which is based on all local (fully irreducible) vertex corrections beyond the bare Coulomb interaction. It includes the so-called GW and dynamical m
In a partially filled flat Bloch band electrons do not have a well defined Fermi surface and hence the low-energy theory is not a Fermi liquid. Neverethless, under the influence of an attractive interaction, a superconductor well described by the Bar
In this work, we adapt the formalism of the dynamical vertex approximation (D$Gamma$A), a diagrammatic approach including many-body correlations beyond the dynamical mean-field theory, to the case of attractive onsite interactions. We start by exploi
We study the concomitant breaking of spatial translations and dilatations in Ginzburg-Landau-like models, where the dynamics responsible for the symmetry breaking is described by an effective Mexican hat potential for spatial gradients. We show that
We recently introduced the dynamical cluster approximation(DCA), a new technique that includes short-ranged dynamical correlations in addition to the local dynamics of the dynamical mean field approximation while preserving causality. The technique i